首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   974篇
  免费   27篇
  国内免费   1篇
测绘学   32篇
大气科学   78篇
地球物理   193篇
地质学   298篇
海洋学   120篇
天文学   194篇
自然地理   87篇
  2022年   5篇
  2021年   10篇
  2020年   11篇
  2019年   13篇
  2018年   9篇
  2017年   15篇
  2016年   24篇
  2015年   20篇
  2014年   26篇
  2013年   50篇
  2012年   24篇
  2011年   60篇
  2010年   29篇
  2009年   45篇
  2008年   39篇
  2007年   41篇
  2006年   47篇
  2005年   30篇
  2004年   33篇
  2003年   32篇
  2002年   38篇
  2001年   34篇
  2000年   25篇
  1999年   19篇
  1998年   18篇
  1997年   15篇
  1996年   17篇
  1995年   15篇
  1994年   17篇
  1993年   14篇
  1992年   9篇
  1991年   16篇
  1990年   12篇
  1989年   8篇
  1988年   13篇
  1987年   11篇
  1986年   6篇
  1985年   21篇
  1984年   18篇
  1983年   11篇
  1982年   10篇
  1981年   10篇
  1979年   15篇
  1978年   6篇
  1977年   7篇
  1976年   5篇
  1974年   5篇
  1973年   5篇
  1971年   5篇
  1970年   4篇
排序方式: 共有1002条查询结果,搜索用时 15 毫秒
51.
52.
Predictive vegetation modeling can be used statistically to relate the distribution of vegetation across a landscape as a function of important environmental variables. Often these models are developed without considering the spatial pattern that is inherent in biogeographical data, resulting from either biotic processes or missing or misspecified environmental variables. Including spatial dependence explicitly in a predictive model can be an efficient way to improve model accuracy with the available data. In this study, model residuals were interpolated and added to model predictions, and the resulting prediction accuracies were assessed. Adding kriged residuals improved model accuracy more often than adding simulated residuals, although some alliances showed no improvement or worse accuracy when residuals were added. In general, the prediction accuracies that were not increased by adding kriged residuals were either rare in the sample or had high nonspatial model accuracy. Regression interpolation methods can be an important addition to current tools used in predictive vegetation models as they allow observations that are predicted well by environmental variables to be left alone, while adjusting over‐ and underpredicted observations based on local factors.  相似文献   
53.
Salinity has a major effect on water users in the Colorado River Basin, estimated to cause almost $300 million per year in economic damages. The Colorado River Basin Salinity Control Program implements and manages projects to reduce salinity loads, investing millions of dollars per year in irrigation upgrades, canal projects, and other mitigation strategies. To inform and improve mitigation efforts, there is a need to better understand sources of salinity to streams and how salinity has changed over time. This study explores salinity in the baseflow fraction of streamflow, assessing whether groundwater is a significant contributor of dissolved solids to streams in the Upper Colorado River Basin (UCRB). Chemical hydrograph separation was used to estimate baseflow discharge and baseflow dissolved solids loads at stream gages (n = 69) across the UCRB. On average, it is estimated that 89% of dissolved solids loads originate from the baseflow fraction of streamflow, indicating that subsurface transport processes play a dominant role in delivering dissolved solids to streams in the UCRB. A statistical trend analysis using weighted regressions on time, discharge, and season was used to evaluate changes in baseflow dissolved solids loads in streams (n = 27) from 1986 to 2011. Decreasing trends in baseflow dissolved solids loads were observed at 63% of streams. At the three most downstream sites, Green River at Green River, UT, Colorado River at Cisco, UT, and the San Juan River near Bluff, UT, baseflow dissolved solids loads decreased by a combined 823,000 metric tons (mT), which is approximately 69% of projected basin‐scale decreases in total dissolved solids loads as a result of salinity control efforts. Decreasing trends in baseflow dissolved solids loads suggest that salinity mitigation projects, landscape changes, and/or climate are reducing dissolved solids transported to streams through the subsurface. Notably, the pace and extent of decreases in baseflow dissolved solids loads declined during the most recent decade; average decreasing loads during the 2000s (28,200 mT) were only 54% of average decreasing loads in the 1990s (51,700 mT).  相似文献   
54.
Assuming homogeneity in alluvial aquifers is convenient, but limits our ability to accurately predict stream‐aquifer interactions. Research is needed on (i) identifying the presence of focused, as opposed to diffuse, groundwater discharge/recharge to streams and (ii) the magnitude and role of large‐scale bank and transient storage in alluvial floodplains relative to changes in stream stage. The objective of this research was to document and quantify the effect of stage‐dependent aquifer heterogeneity and bank storage relative to changes in stream stage using groundwater flow divergence and direction. Monitoring was performed in alluvial floodplains adjacent to the Barren Fork Creek and Honey Creek in northeastern Oklahoma. Based on results from subsurface electrical resistivity mapping, observation wells were installed in high and low electrical resistivity subsoils. Water levels in the wells were recorded real time using pressure transducers (August to October 2009). Divergence was used to quantify heterogeneity (i.e. variation in hydraulic conductivity, porosity, and/or aquifer thickness), and flow direction was used to assess the potential for large‐scale (100 m) bank or transient storage. Areas of localized heterogeneity appeared to act as divergence zones allowing stream water to quickly enter the groundwater system, or as flow convergence zones draining a large groundwater area. Maximum divergence or convergence occurred with maximum rates of change in flow rates or stream stage. Flow directions in the groundwater changed considerably between base and high flows, suggesting that the floodplains acted as large‐scale bank storage zones, rapidly storing and releasing water during passage of a storm hydrograph. During storm events at both sites, the average groundwater direction changed by at least 90° from the average groundwater direction during baseflow. Aquifer heterogeneity in floodplains yields hyporheic flows that are more responsive and spatially and temporally complex than would be expected compared to more common assumptions of homogeneity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
55.
In contrast to active tectonic settings, little is known about the potential feedback between surface processes and climate change in tectonically inactive cratonic regions. Here, we studied the driving forces of erosion and landscape evolution in the Kruger National Park in South Africa using cosmogenic nuclide dating. 10Be‐derived catchment‐wide erosion rates (~2 and ~10 mm ka?1) are similar in magnitude to erosion and rock uplift elsewhere in South Africa, suggesting that (1) rock uplift is solely the isostatic response to erosion and (2) the first‐order topography is likely of Cretaceous age. The topographic maturity is promoted by widespread exposure of rocks resistant to erosion. Our data, however, suggest that local variations in rock resistance lead to transient landscape changes, with local increases in relief and erosion rates.  相似文献   
56.
A paucity of empirical non‐marine data means that uncertainty surrounds the impact of climate change on terrestrial ecosystems in tropical regions beyond the last glacial period. The sedimentary fill of the Bosumtwi impact crater (Ghana) provides the longest continuous Quaternary terrestrial archive of environmental change in West Africa, spanning the last ~1.08 million years. Here we explore the drivers of change in ecosystem and climate in tropical West Africa for the past ~540 000 years using pollen analysis and the nitrogen isotope composition of bulk organic matter preserved in sediments from Lake Bosumtwi. Variations in grass pollen abundance (0?99%) indicate transitions between grassland and forest. Coeval variations in the nitrogen isotopic composition of organic matter indicate that intervals of grassland expansion coincided with minimum lake levels and low regional moisture availability. The observed changes responded to orbitally paced global climate variations on both glacial–interglacial and shorter timescales. Importantly, the magnitude of ecosystem change revealed by our data exceeds that previously determined from marine records, demonstrating for the first time the high sensitivity of tropical lowland ecosystems to Quaternary climate change.
  相似文献   
57.
Land managers responsible for invasive species removal in the USA require tools to prevent the Asian longhorned beetle (Anoplophora glabripennis) (ALB) from decimating the maple-dominant hardwood forests of Massachusetts and New England. Species distribution models (SDMs) and spread models have been applied individually to predict the invasion distribution and rate of spread, but the combination of both models can increase the accuracy of predictions of species spread over time when habitat suitability is heterogeneous across landscapes. First, a SDM was fit to 2008 ALB presence-only locations. Then, a stratified spread model was generated to measure the probability of spread due to natural and human causes. Finally, the SDM and spread models were combined to evaluate the risk of ALB spread in Central Massachusetts in 2008–2009. The SDM predicted many urban locations in Central Massachusetts as having suitable environments for species establishment. The combined model shows the greatest risk of spread and establishment in suitable locations immediately surrounding the epicentre of the ALB outbreak in Northern Worcester with lower risk areas in suitable locations only accessible through long-range dispersal from access to human transportation networks. The risk map achieved an accuracy of 67% using 2009 ALB locations for model validation. This model framework can effectively provide risk managers with valuable information concerning the timing and spatial extent of spread/establishment risk of ALB and potential strategies needed for effective future risk management efforts.  相似文献   
58.
59.
Sandy beach surf zones serve as alternative nursery habitats for juvenile Chinook salmon (0 age) during their early marine residency, a period considered critical due to high and variable mortality rates. Despite the importance of early marine residence, the extent of juvenile salmon surf zone use and movement along sandy beaches is not well understood. Juvenile Chinook salmon distribution and movement were studied in shallow surf zone habitats by sampling from 2006 to 2010 with a beach seine 11 beaches adjacent and distant to four estuary mouths in Oregon and Washington, USA. The estuary of origin of each juvenile was determined using genetic stock identification methods and coded wire tags. Surf zones sampled were within littoral cells, which are stretches of the coastline bordered by rocky headlands, and included estuaries with and without Chinook salmon populations. Juvenile salmonids were only collected at littoral cells with Chinook-inhabited watersheds. Most juveniles (95 %) were present at sandy beaches adjacent (<500 m from estuary mouth) to their estuary of origin. Few Chinook salmon (5 %) were collected at littoral cells that contained non-natal estuaries. These results indicate that juvenile Chinook salmon inhabiting surf zones mostly use beaches adjacent to their estuaries of origin, but some juveniles may reside in beaches distant from their point of ocean entry.  相似文献   
60.
Climate effects on hydrology impart high variability to water-quality properties, including nutrient loadings, concentrations, and phytoplankton biomass as chlorophyll-a (chl-a), in estuarine and coastal ecosystems. Resolving long-term trends of these properties requires that we distinguish climate effects from secular changes reflecting anthropogenic eutrophication. Here, we test the hypothesis that strong climatic contrasts leading to irregular dry and wet periods contribute significantly to interannual variability of mean annual values of water-quality properties using in situ data for Chesapeake Bay. Climate effects are quantified using annual freshwater discharge from the Susquehanna River together with a synoptic climatology for the Chesapeake Bay region based on predominant sea-level pressure patterns. Time series of water-quality properties are analyzed using historical (1945–1983) and recent (1984–2012) data for the bay adjusted for climate effects on hydrology. Contemporary monitoring by the Chesapeake Bay Program (CBP) provides data for a period since mid-1984 that is significantly impacted by anthropogenic eutrophication, while historical data back to 1945 serve as historical context for a period prior to severe impairments. The generalized additive model (GAM) and the generalized additive mixed model (GAMM) are developed for nutrient loadings and concentrations (total nitrogen—TN, nitrate?+?nitrate—NO2?+?NO3) at the Susquehanna River and water-quality properties in the bay proper, including dissolved nutrients (NO2?+?NO3, orthophosphate—PO4), chl-a, diffuse light attenuation coefficient (K D (PAR)), and chl-a/TN. Each statistical model consists of a sum of nonlinear functions to generate flow-adjusted time series and compute long-term trends accounting for climate effects on hydrology. We present results identifying successive periods of (1) eutrophication ca. 1945–1980 characterized by approximately doubled TN and NO2?+?NO3 loadings, leading to increased chl-a and associated ecosystem impairments, and (2) modest decreases of TN and NO2?+?NO3 loadings from 1981 to 2012, signaling a partial reversal of nutrient over-enrichment. Comparison of our findings with long-term trends of water-quality properties for a variety of estuarine and coastal ecosystems around the world reveals that trends for Chesapeake Bay are weaker than for other systems subject to strenuous management efforts, suggesting that more aggressive actions than those undertaken to date will be required to counter anthropogenic eutrophication of this valuable resource.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号