首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1193篇
  免费   76篇
  国内免费   9篇
测绘学   19篇
大气科学   82篇
地球物理   311篇
地质学   605篇
海洋学   87篇
天文学   124篇
综合类   6篇
自然地理   44篇
  2023年   6篇
  2022年   18篇
  2021年   29篇
  2020年   24篇
  2019年   27篇
  2018年   60篇
  2017年   63篇
  2016年   68篇
  2015年   55篇
  2014年   79篇
  2013年   117篇
  2012年   41篇
  2011年   76篇
  2010年   71篇
  2009年   77篇
  2008年   57篇
  2007年   43篇
  2006年   32篇
  2005年   20篇
  2004年   23篇
  2003年   24篇
  2002年   28篇
  2001年   18篇
  2000年   15篇
  1999年   9篇
  1998年   8篇
  1997年   11篇
  1996年   13篇
  1995年   11篇
  1994年   18篇
  1993年   6篇
  1992年   12篇
  1991年   10篇
  1990年   4篇
  1989年   10篇
  1987年   6篇
  1986年   4篇
  1985年   5篇
  1984年   4篇
  1983年   9篇
  1982年   4篇
  1980年   8篇
  1979年   6篇
  1978年   3篇
  1977年   5篇
  1976年   4篇
  1975年   8篇
  1974年   5篇
  1973年   4篇
  1971年   3篇
排序方式: 共有1278条查询结果,搜索用时 31 毫秒
31.
This paper assesses linear regression‐based methods in downscaling daily precipitation from the general circulation model (GCM) scale to a regional climate model (RCM) scale (45‐ and 15‐km grids) and down to a station scale across North America. Traditional downscaling experiments (linking reanalysis/dynamical model predictors to station precipitation) as well as nontraditional experiments such as predicting dynamic model precipitation from larger‐scale dynamic model predictors or downscaling dynamic model precipitation from predictors at the same scale are conducted. The latter experiments were performed to address predictability limit and scale issues. The results showed that the downscaling of daily precipitation occurrence was rarely successful at all scales, although results did constantly improve with the increased resolution of climate models. The explained variances for downscaled precipitation amounts at the station scales were low, and they became progressively better when using predictors from a higher‐resolution climate model, thus showing a clear advantage in using predictors from RCMs driven by reanalysis at its boundaries, instead of directly using reanalysis data. The low percentage of explained variances resulted in considerable underestimation of daily precipitation mean and standard deviation. Although downscaling GCM precipitation from GCM predictors (or RCM precipitation from RCM predictors) cannot really be considered downscaling, as there is no change in scale, the exercise yields interesting information as to the limit in predictive ability at the station scale. This was especially clear at the GCM scale, where the inability of downscaling GCM precipitation from GCM predictors demonstrates that GCM precipitation‐generating processes are largely at the subgrid scale (especially so for convective events), thus indicating that downscaling precipitation at the station scale from GCM scale is unlikely to be successful. Although results became better at the RCM scale, the results indicate that, overall, regression‐based approaches did not perform well in downscaling precipitation over North America. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
32.
Saçu  Şehriban  Erdik  Tarkan  Şen  Olgay 《中国海洋工程》2020,34(6):881-888
China Ocean Engineering - Turkey has announced its plan to construct a new waterway, Canal Istanbul, parallel to the Bosphorus. In this study, the influence of Canal Istanbul on salinity...  相似文献   
33.
34.
Historically, paired watershed studies have been used to quantify the hydrological effects of land use and management practices by concurrently monitoring 2 similar watersheds during calibration (pretreatment) and post‐treatment periods. This study characterizes seasonal water table and flow response to rainfall during the calibration period and tests a change detection technique of moving sums of recursive residuals (MOSUM) to select calibration periods for each control–treatment watershed pair when the regression coefficients for daily water table elevation were most stable to minimize regression model uncertainty. The control and treatment watersheds were 1 watershed of 3–4‐year‐old intensely managed loblolly pine (Pinus taeda L.) with natural understory, 1 watershed of 3–4‐year‐old loblolly pine intercropped with switchgrass (Panicum virgatum), 1 watershed of 14–15‐year‐old thinned loblolly pine with natural understory (control), and 1 watershed of switchgrass only. The study period spanned from 2009 to 2012. Silvicultural operational practices during this period acted as external factors, potentially shifting hydrologic calibration relationships between control and treatment watersheds. MOSUM results indicated significant changes in regression parameters due to silvicultural operations and were used to identify stable relationships for water table elevation. None of the calibration relationships developed using this method were significantly different from the classical calibration relationship based on published historical data. We attribute that to the similarity of historical and 2010–2012 leaf area index on control and treatment watersheds as moderated by the emergent vegetation. Although the MOSUM approach does not eliminate the need for true calibration data or replace the classic paired watershed approach, our results show that it may be an effective alternative approach when true data are unavailable, as it minimizes the impacts of external disturbances other than the treatment of interest.  相似文献   
35.
36.
This study assesses whether MODIS Vegetation Continuous Fields percent tree cover (PTC) data can detect deforestation and forest degradation. To assess the usefulness of PTC for detecting deforestation, we used a data set consisting of eight forest and seven non-forest categories. To evaluate forest degradation, we used data from two temperate forest types in three conservation states: primary (dense), secondary (moderately degraded) and open (heavily degraded) forest. Our results show that PTC can differentiate temperate forest from non-forest categories (p = 0.05) and thus suggests PTC can adequately detect deforestation in temperate forests. In contrast, single-date PTC data does not appear to be adequate to detect forest degradation in temperate forests. As for tropical forest, PTC can partially discriminate between forest and non-forest categories.  相似文献   
37.
38.
Leaf mechanical traits are important to understand how aquatic plants fracture and deform when subjected to abiotic (currents or waves) or biotic (herbivory attack) mechanical forces. The likely occurrence of variation during leaf ontogeny in these traits may thus have implications for hydrodynamic performance and vulnerability to herbivory damage, and may be associated with changes in morphologic and chemical traits. Seagrasses, marine flowering plants, consist of shoot bundles holding several leaves with different developmental stages, in which outer older leaves protect inner younger leaves. In this study we examined the long‐lived seagrass Posidonia oceanica to determine ontogenic variation in mechanical traits across leaf position within a shoot, representing different developmental stages. Moreover, we investigated whether or not the collection procedure (classical uprooted shoot versus non‐destructive shoot method: cutting the shoot without a portion of rhizome) and time span after collection influence mechanical measurements. Neither collection procedure nor time elapsed within 48 h of collection affected measurements of leaf biomechanical traits when seagrass shoots were kept moist in dark cool conditions. Ontogenic variation in mechanical traits in P. oceanica leaves over intermediate and adult developmental stages was observed: leaves weakened and lost stiffness with aging, while mid‐aged leaves (the longest and thickest ones) were able to withstand higher breaking forces. In addition, younger leaves had higher nitrogen content and lower fiber content than older leaves. The observed patterns may explain fine‐scale within‐shoot ecological processes of leaves at different developmental stages, such as leaf shedding and herbivory consumption in P. oceanica.  相似文献   
39.
40.
Human activities have progressively increased in recent years. Consequently, significant environment deterioration resulted. Soils have a particularly varied vulnerability to heavy metal pollution, especially in the vicinity of industrial areas. Heavy metal contamination of soil may induce risks and hazards to humans and the ecosystem, while toxic metals in soil can severely inhibit the biodegradation of organic contaminants. This paper is focused on human health risk assessment from extremely contaminated soil with heavy metals, mainly with carcinogenic elements. The study refers to an agricultural area in the vicinity of an old metallurgical processing industrial facility. The contaminants evaluated in the present paper are beryllium (Be), cadmium (Cd), chromium (Cr), nickel (Ni) and lead (Pb). Contamination level is pointed out through laboratory analysis results of soil samples taken from 0–0.2 m, 0.2–0.4 m soil layers and up to 2.1 m soil depth. Some heavy metal concentrations (Cd, Cr and Pb) exceed the intervention thresholds for sensitive areas, as they are stipulated in the national regulation in Romania. The identified average concentration levels of Cd, CrVI and Pb in the first layer of the investigated land are 23.83, 7.71 and 704.22 mg/kgd.w, respectively. The results show that the potential risk of human health is relevant (higher than the acceptable one after World Health Organization) and a possible solution for the remediation should become a major concern for the investigated area.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号