首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2423篇
  免费   316篇
  国内免费   360篇
测绘学   202篇
大气科学   286篇
地球物理   694篇
地质学   1019篇
海洋学   337篇
天文学   122篇
综合类   160篇
自然地理   279篇
  2024年   6篇
  2023年   39篇
  2022年   103篇
  2021年   107篇
  2020年   105篇
  2019年   98篇
  2018年   146篇
  2017年   120篇
  2016年   124篇
  2015年   120篇
  2014年   151篇
  2013年   133篇
  2012年   126篇
  2011年   156篇
  2010年   136篇
  2009年   139篇
  2008年   112篇
  2007年   103篇
  2006年   82篇
  2005年   78篇
  2004年   74篇
  2003年   77篇
  2002年   117篇
  2001年   100篇
  2000年   69篇
  1999年   48篇
  1998年   59篇
  1997年   57篇
  1996年   36篇
  1995年   42篇
  1994年   29篇
  1993年   28篇
  1992年   33篇
  1991年   18篇
  1990年   10篇
  1989年   18篇
  1988年   9篇
  1987年   9篇
  1986年   4篇
  1985年   7篇
  1984年   6篇
  1983年   6篇
  1982年   5篇
  1981年   7篇
  1980年   10篇
  1979年   7篇
  1978年   8篇
  1976年   3篇
  1975年   5篇
  1973年   3篇
排序方式: 共有3099条查询结果,搜索用时 15 毫秒
991.
A climate regime shift (CRS) in the Pacific sea surface temperature (SST) pattern was identified in 1996/1997. This decadal SST change is characterized by a warming over the equatorial western Pacific (EWP) and mid-latitude North and South Pacific and a cooling in the equatorial central Pacific (ECP). The large-scale atmospheric circulation change associated with this CRS exhibits a pair of low-level anticyclonic (cyclonic) gyres off the EWP (ECP) and a zonal-vertical overturning circulation anomaly along the equator. Both the empirical orthogonal function and singular vector decomposition analyses indicate that the CRS signal in 1996/1997 is robust. A mixed layer heat budget analysis suggests that the abrupt change of SST in the EWP and ECP is attributed to different physical processes. The abrupt warming over the EWP was initiated by a short wave radiation (SWR) anomaly in association with a preceding warming in the ECP. The cooling in the ECP happened about 6 months later than that of the EWP and was primarily attributed to anomalous oceanic zonal and vertical temperature advections.  相似文献   
992.
Using long-term observational data and numerical model experiments, the combined effect of the El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) on the variability of the East Asian winter monsoon is examined. In the observations, it is found that when the ENSO and PDO are in-phase combinations (i.e., El Niño/positive PDO phase and La Niña/negative PDO phase), a negative relationship between ENSO and East Asian winter monsoon is significantly intensified. In other words, when El Niño (La Niña) occurs with positive (negative) PDO phase, anomalous warm (cold) temperatures are dominant over the East Asian winter continent. On the other hand, there are no significant temperature anomalies when the ENSO and PDO are out-of-phase combinations (i.e., El Niño/negative PDO phase and La Niña/positive PDO phase). Further analyses indicate that the anticyclone over the western North Pacific including the East Asian marginal seas plays an essential role in modulating the intensity of the East Asian winter monsoon under the changes of ENSO–PDO phase relationship. Long-lasting high pressure and warm sea surface temperature anomalies during the late fall/winter and following spring over the western North Pacific, which appear as the El Niño occurs with positive PDO phase, can lead to a weakened East Asian winter monsoon by transporting warm and wet conditions into the East Asian continent through the southerly wind anomalies along the western flank of the anomalous high pressure, and vice versa as the La Niña occurs with negative PDO phase. In contrast, the anomalous high pressure over the western North Pacific does not show a prominent change under the out-of-phase combinations of ENSO and PDO. Numerical model experiments confirm the observational results, accompanying dominant warm temperature anomalies over East Asia via strong anticyclonic circulation anomalies near the Philippine Sea as the El Niño occurs with positive PDO phase, whereas such warming is weakened as the El Niño occurs with negative PDO phase. This result supports the argument that the changes in the East Asian winter monsoon intensity with ENSO are largely affected by the strength of the anticyclone over the western North Pacific, which significantly changes according to the ENSO–PDO phase relationship.  相似文献   
993.
在无人、无通讯信号的艰险地区开展地质调查工作,其传统模式是小组独立作战,工作环境基本与世隔绝。由于卫星电话或电台在成本和使用上不便,使野外地质调查工作处在极其原始状态下,保障生命安全和地质工作调查精度困难极大。通过3S技术、IP通讯卫星技术与北斗系统、网格GIS和"云"计算技术的集成,构建北斗系统与网格组合的静动态4级组网模式和多种资源的协同技术,形成天地空技术合一的现代化野外地质工作+管理+安全保障的技术架构与智能地质调查服务模式。  相似文献   
994.
Warm sea-surface temperature (SST) biases in the southeastern tropical Atlantic (SETA), which is defined by a region from 5°E to the west coast of southern Africa and from 10°S to 30°S, are a common problem in many current and previous generation climate models. The Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble provides a useful framework to tackle the complex issues concerning causes of the SST bias. In this study, we tested a number of previously proposed mechanisms responsible for the SETA SST bias and found the following results. First, the multi-model ensemble mean shows a positive shortwave radiation bias of ~20 W m?2, consistent with models’ deficiency in simulating low-level clouds. This shortwave radiation error, however, is overwhelmed by larger errors in the simulated surface turbulent heat and longwave radiation fluxes, resulting in excessive heat loss from the ocean. The result holds for atmosphere-only model simulations from the same multi-model ensemble, where the effect of SST biases on surface heat fluxes is removed, and is not sensitive to whether the analysis region is chosen to coincide with the maximum warm SST bias along the coast or with the main SETA stratocumulus deck away from the coast. This combined with the fact that there is no statistically significant relationship between simulated SST biases and surface heat flux biases among CMIP5 models suggests that the shortwave radiation bias caused by poorly simulated low-level clouds is not the leading cause of the warm SST bias. Second, the majority of CMIP5 models underestimate upwelling strength along the Benguela coast, which is linked to the unrealistically weak alongshore wind stress simulated by the models. However, a correlation analysis between the model simulated vertical velocities and SST biases does not reveal a statistically significant relationship between the two, suggesting that the deficient coastal upwelling in the models is not simply related to the warm SST bias via vertical heat advection. Third, SETA SST biases in CMIP5 models are correlated with surface and subsurface ocean temperature biases in the equatorial region, suggesting that the equatorial temperature bias remotely contributes to the SETA SST bias. Finally, we found that all CMIP5 models simulate a southward displaced Angola–Benguela front (ABF), which in many models is more than 10° south of its observed location. Furthermore, SETA SST biases are most significantly correlated with ABF latitude, which suggests that the inability of CMIP5 models to accurately simulate the ABF is a leading cause of the SETA SST bias. This is supported by simulations with the oceanic component of one of the CMIP5 models, which is forced with observationally derived surface fluxes. The results show that even with the observationally derived surface atmospheric forcing, the ocean model generates a significant warm SST bias near the ABF, underlining the important role of ocean dynamics in SETA SST bias problem. Further model simulations were conducted to address the impact of the SETA SST biases. The results indicate a significant remote influence of the SETA SST bias on global model simulations of tropical climate, underscoring the importance and urgency to reduce the SETA SST bias in global climate models.  相似文献   
995.
This paper explores the role of the secondary inorganic aerosol (SIA) species ammonium,NH4+,nitrate,NO3-,and sulfate,SO24-,during haze and fog events using hourly mass concentrations of PM2.5 measured at a suburban site in Hangzhou,China.A total of 546 samples were collected between 1 April and 8 May 2012.The samples were analyzed and classified as clear,haze or fog depending on visibility and relative humidity (RH).The contribution of SIA species to PM2.5 mass increased to ~50% during haze and fog.The mass contribution of nitrate to PM2.5 increased from 11% during clear to 20% during haze episodes.Nitrate mass exceeded sulfate mass during haze,while near equal concentrations were observed during fog episodes.The role of RH on the correlation between concentrations of SIA and visibility was examined,with optimal correlation at 60%-70% RH.The total acidity during clear,haze and fog periods was 42.38,48.38 and 45.51 nmol m-3,respectively,indicating that sulfate,nitrate and chloride were not neutralized by ammonium during any period.The nitrate to sulfate molar ratio,as a function of the ammonium to sulfate molar ratio,indicated that nitrate formation during fog started at a higher ammonium to sulfate molar ratio compared to clear and haze periods.During haze and fog,the nitrate oxidation ratio increased by a factor of 1.6-1.7,while the sulfur oxidation ratio increased by a factor of 1.2-1.5,indicating that both gaseous NO2 and SO2 were involved in the reduced visibility.  相似文献   
996.
The location and occurrence time of convective rainfalls have attracted great public concern as they can lead to terrible disasters. However, the simulation results of convective rainfalls in the Pearl River Delta region often show significant discrepancies from the observations. One of the major causes lies in the inaccurate geographic distribution of land surface properties used in the model simulation of the heavy precipitation. In this study, we replaced the default soil and vegetation datasets of Weather Research and Forecasting (WRF) model with two refined datasets, i.e. the GlobCover 2009 (GLC2009) land cover map and the Harmonized World Soil Database (HWSD) soil texture, to investigate the impact of vegetation and soil on the rainfall patterns. The result showed that the simulation patterns of convective rainfalls obtained from the coupled refined datasets are more consistent with the observations than those obtained from the default ones. By using the coupled refined land surface datasets, the overlap ratio of high precipitation districts reached 36.3% with a variance of 28.5 km from the observed maximum rainfall position, while those of the default United States Geological Survey (USGS) dataset and Moderate Resolution Imaging Spectroradiometer (MODIS) dataset are 17.0%/32.8 km and 24.9%/49.0 km, respectively. The simulated total rainfall amount and occurrence time using the coupled refined datasets are the closest to the observed peak values. In addition, the HWSD soil data has improved the accuracy of the simulated precipitation amount, and the GLC2009 land cover data also did better in catching the early peak time.  相似文献   
997.
基于呼伦贝尔市1971-2011年16站地面天气现象观测资料,利用趋势分析、Mann-Kendall检验和经验正交函数(EOF)分析方法揭示呼伦贝尔市雷暴时空变化特征。分析结果表明:从时间变化看,呼伦贝尔市雷暴日近41a总体呈减少趋势,雷暴主要出现在夏季,集中在7月,雷暴在13:00-15:00出现频次较高;初雷暴日和终雷暴日均呈现推迟趋势。从空间分布看,大兴安岭山区不但是雷暴的高发区,而且雷暴持续时间也较长。EOF分析结果显示,雷暴日主要EOF模态在空间上表现出一致的减少趋势以及东西反相位的特征。  相似文献   
998.
Seasonal snow is one of the most important influences on the development and distribution of permafrost and the hydrothermal regime in surface soil. Alpine meadow, which constitutes the main land type in permafrost regions of the Qinghai-Tibet Plateau, was selected to study the influence of seasonal snow on the temperature and moisture in active soil layers under different vegetation coverage. Monitoring sites for soil moisture and temperature were constructed to observe the hydrothermal processes in active soil layers under different vegetation cover with seasonal snow cover variation for three years from 2010 to 2012. Differences in soil temperature and moisture in areas of diverse vegetation coverage with varying levels of snow cover were analyzed using active soil layer water and temperature indices. The results indicated that snow cover greatly influenced the hydrothermal dynamics of the active soil layer in alpine meadows. In the snow manipulation experiment with a snow depth greater than 15 cm, the snow cover postponed both the freeze-fall and thawrise onset times of soil temperature and moisture in alpine LC (lower vegetation coverage) meadows and of soil moisture in alpine HC (higher vegetation coverage) meadows; however, the opposite response occurred for soil temperatures of alpine HC meadows,where the entire melting period was extended by advancing the thaw-rise and delaying the freeze-fall onset time of the soil temperature. Snow cover resulted in a decreased amplitude and rate of variation in soil temperature, for both alpine HC meadows and alpine LC meadows, whereas the distinct influence of snow cover on the amplitude and rate of soil moisture variation occurred at different soil layers with different vegetation coverages. Snow cover increased the soil moisture of alpine grasslands during thawing periods. The results confirmed that the annual hydrothermal dynamics of active layers in permafrost were subject to the synergistic actions of both snow cover and vegetation coverage.  相似文献   
999.
The localized rain rate maxima (RM) of the inner core region of intense tropical cyclones (TCs) are investigated using Version 6 of the Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis data-set from 1998 to 2010. Specifically, this study examines the probabilities of RM exceeding 25 mm h?1 (P25) in intense TCs. The 25 mm h?1 RM is the 90th percentile of all RM observations during the study period. The descending order of P25 observed from intense TCs for the six major ocean basins is: the North Indian Ocean, the Atlantic Ocean, the Northwest Pacific Ocean, the South Pacific Ocean, the South Indian Ocean, and the East-central Pacific Ocean. The six major basins have been subdivided into 29 sub-basins to discern regional variability of RM. P25 increases with increasing TC category in all major basins, except for the South Pacific. Sub-basins with intense TCs that produce extreme rainfall rate maxima include the Bay of Bengal, the South Philippine Sea, the East China Sea, the north coast of Australia, southeast Melanesia, and the Northwest Atlantic. Sub-basins with a higher proportion of category 5 (CAT5) observations than category 3 (CAT3) observations tend to have a greater P25 beyond 60 km from the storm center.  相似文献   
1000.
A new coarse-time Global Positioning System (GPS) positioning algorithm based on the use of Doppler and code-phase measurements is proposed and described. The proposed method was demonstrated to be essential for reducing the time to first fix and the power consumption in a GPS receiver. Only 1 ms of data is required to obtain a positioning fix with accuracy comparable to that of the traditional GPS navigation algorithm. The algorithm is divided into two parts. In the first part, the Doppler measurement of the GPS signal is used to determine the coarse user position. With proper constraints, the required time accuracy for the Doppler measurements can be relaxed to be as long as 12 h. In the second part of the algorithm, the accurate user position is calculated by means of the 1 ms code-phase data. The traditional tracking process is no longer necessary in the proposed algorithm. Using the acquired 1-ms code-phase measurement, the positioning accuracy was determined to be approximately a few tens of meters in our experimental results. However, if the data length is extended to 10 ms, the positioning accuracy can be improved to within 10–20 m, which is similar to that of the traditional GPS positioning method. Various experiments were conducted to verify the usefulness of the proposed algorithm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号