首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   2篇
大气科学   1篇
地球物理   18篇
地质学   5篇
海洋学   2篇
  2020年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2009年   3篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2001年   1篇
  2000年   3篇
  1998年   1篇
  1986年   1篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
1.
2.
3.
Tian Zhou  Ted Endreny 《水文研究》2012,26(22):3378-3392
River restoration projects have installed j‐hook deflectors along the outer bank of meander bends to reduce hydraulic erosion, and in this study we use a computational fluid dynamics (CFD) model to document how these deflectors initiate changes in meander hydrodynamics. We validated the CFD with streamwise and cross‐channel bankfull velocities from a 193° meander bend flume (inlet at 0°) with a fixed point bar and pool equilibrium bed but no j‐hooks, and then used the CFD to simulate changes to flow initiated by bank‐attached boulder j‐hooks (1st attached at 70°, then a 2nd at 160°). At bankfull and half bankfull flow the j‐hooks flattened transverse water surface slopes, formed backwater pools upstream of the boulders, and steepened longitudinal water slopes across the boulders and in the conveyance region off the mid‐channel boulder tip. Streamwise velocity and mass transport jets upstream of the j‐hooks were stilled, mid‐channel jets were initiated in the conveyance region, eddies with a cross‐channel axis formed below boulders, and eddies with a vertical axis were shed into wake zones downstream of the point bar and outer bank boulders. At half bankfull depth conveyance region flow cut toward the outer bank downstream of the j‐hook boulders and the secondary circulation cells were reshaped. At bankfull depth the j‐hook at 160° was needed to redirect bank‐impinging flow sent by the upstream j‐hook. The hooked boulder tip of both j‐hooks funneled surface flow into mid‐channel plunging jets, which reversed the secondary circulation cells and initiated 1 to 3 counter rotating cells through the entire meander. The main outer bank collision zone centered at 50° without the j‐hook was moved by the j‐hook to within and just beyond the 70° j‐hook boulder region, which displaced other mass transport zones downstream. J‐hooks re‐organized water surface slopes, streamwise and cross‐channel velocities, and mass transport patterns, to move shear stress from the outer bank and into the conveyance and mid‐channel zones at bankfull flow. At half bankfull flows a patch of high shear re‐attached to the outer bank below the downstream j‐hook. J‐hook geometry and placement within natural meanders can be analyzed with CFD models to help restoration teams reach design goals and understand hydraulic impacts. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
4.
In‐channel rock vane structures are widely used in stream restoration as a way to reduce stream channel erosion and create pool or riffle features. When these structures change hydraulic gradients they may affect ecological stream functions, such as hyporheic exchange flow (HEF) patterns. A study of constructed in‐channel structure controls on HEF was conducted in the third‐order Batavia Kill, New York using stream and hyporheic temperature amplitude analysis and computational fluid dynamics (CFD) hydraulic simulations. Temperature monitors were installed in the water column and channel bed at six locations around each of seven in‐channel restoration structures (three cross‐vanes and four J‐hooks) at baseflow in 2007. Elevation surveys of the structures were then used to simulate HEF using CFD. The results indicate a pattern of pronounced upwelling in the run section just below the structure, upwelling transitioning to downwelling within the pool, and pronounced downwelling in the glide out of the pool. This pattern is consistent with natural riffle pool sequences. The direction of HEF inferred from the temperature amplitude analysis agreed with the direction of flow simulated with CFD at 80% of the locations, and the few disagreements were expected due to model limitations. CFD simulation demonstrated that increasing stream flows result in changes in HEF spatial patterns and magnitude at each structure. This work illustrates how CFD simulations can guide design of in‐channel restoration structures for HEF function. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
5.
Conceptualizing food systems for global environmental change research   总被引:2,自引:0,他引:2  
This paper outlines a framework for studying the multiple interactions of broadly defined food systems with global environmental change and evaluating the major societal outcomes affected by these interactions: food security, ecosystem services and social welfare. In building the framework the paper explores and synthesizes disparate literature on food systems food security and global environmental change, bridging social science and natural science perspectives. This collected evidence justifies a representation of food systems, which can be used to identify key processes and determinants of food security in a given place or time, particularly the impacts of environmental change. It also enables analysis of the feedbacks from food system outcomes to drivers of environmental and social change, as well as tradeoffs among the food system outcomes themselves. In food systems these tradeoffs are often between different scales or levels of decision-making or management, so solutions to manage them must be context-specific. With sufficient empirical evidence, the framework could be used to build a database of typologies of food system interactions useful for different management or analytical purposes.  相似文献   
6.
Meander bends in alluvial rivers morphologically evolve towards meander cut‐off with narrowing intra‐meander necks, and this should steepen hydraulic gradients and intensify intra‐meander hyporheic flux. This research used dye tracking and head loss measurements in a 1 : 500 planimetrically scaled laboratory river table to quantify the spatial and temporal intensification of intra‐meander flux rates at two evolution ages. The younger meander bend, M1, had a sinuosity of 2.3, a river neck width of 0.39 cm, and 0.6% river slope, and the older meander bend, M3, had a sinuosity of 5.2, a river neck width of 0.12 cm, and 0.5% river slope. Flux into and out of the meander bend was estimated along the normalized curvilinear distance s*, with the meander neck at s* = 0.1 and s* = 0.9, the meander centroid at s* = 0.37 and s* = 0.63, and the apex at s* = 0.5. Between the meander centroid and neck, we documented a 60% spatial intensification for M1 and a 90% spatial intensification for M3. Between M1 and M3, we documented a 135% temporal intensification at the neck and a 100% intensification at the centroid. Our empirical spatial and temporal intensification rates involving the M1 and the M3 scenario were one to three times lower than theoretical rates derived from a river evolution model with equivalent M1 and M3 planimetry. Overestimation by the theoretical model was attributed to exaggerated head loss caused by the model neglecting groundwater contributions to river stage. Hyporheic exchange provides critical ecosystem services, and its spatial and temporal variation with meander evolution should be considered in river management. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
7.
8.
A new method of simultaneous multi-elemental analysis, Proton Induced X-ray Emission (PIXE), was used to detect trace elements in waters associated with a coal strip-mining operation in southern Indiana. Stream, pond, and ground water samples were collected and analyzed monthly from, or near, Sulphur Creek in Sullivan County. The concentrations of 26 major and trace elements were determined in samples from eleven locations: K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Br, Rb, Sr, Mo, Cd, Sn, Sb, I, Ba, Hg, Pb, and U. Elemental concentrations fluctuated considerably throughout the 13-month sampling period and also among sampling sites. Nickel, Zn, As, Cd, Mn, Fe, and Ca were highest in the upstream water which was most acidic (pH = 2.9–4.0) because of old unreclaimed mining operations. The highest values recorded were Ni = 1662 ppb, Zn = 4953 ppb, As = 26 ppb, Cd = 93 ppb, Mn = 5063 ppb, Fe = 63 ppm, and Ca = 325 ppm. The concentrations of these elements decreased downstream as the pH of Sulphur Creek increased which was likely due to the influence of the calcareous glacial till cover in the area and the recent mining activity which disturbed overburden containing a high percentage of calcareous materials. Lead, I, Br, and Ti values were highest (661 ppb, 86 ppb, 70 ppb, and 45 ppb, respectively) in the ground water from the coal seam (pH approximately 7). Other elements which were relatively high in the pH 7 waters closest to the current mining operations (pond, stream, and groundwater) included K (17 ppm), Sr (3408 ppb), Ba (173 ppb), As (14 ppb), Rb (16 ppb), Sn (14 ppb), and Cu (3840 ppb). The highest Cu concentration was recorded at the point where drainage water from the mine entered Sulphur Creek. Gallium, U, Hg, and Mo were found in low (< 13 ppb for Ga and Hg; < 205 ppb for Mo and U) concentrations and only in the ponds within the mine.  相似文献   
9.
10.
Data assimilation is a sophisticated mathematical technique for combining observational data with model predictions to produce state and parameter estimates that most accurately approximate the current and future states of the true system. The technique is commonly used in atmospheric and oceanic modelling, combining empirical observations with model predictions to produce more accurate and well-calibrated forecasts. Here, we consider a novel application within a coastal environment and describe how the method can also be used to deliver improved estimates of uncertain morphodynamic model parameters. This is achieved using a technique known as state augmentation. Earlier applications of state augmentation have typically employed the 4D-Var, Kalman filter or ensemble Kalman filter assimilation schemes. Our new method is based on a computationally inexpensive 3D-Var scheme, where the specification of the error covariance matrices is crucial for success. A simple 1D model of bed-form propagation is used to demonstrate the method. The scheme is capable of recovering near-perfect parameter values and, therefore, improves the capability of our model to predict future bathymetry. Such positive results suggest the potential for application to more complex morphodynamic models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号