首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1795篇
  免费   52篇
  国内免费   15篇
测绘学   40篇
大气科学   178篇
地球物理   325篇
地质学   594篇
海洋学   141篇
天文学   419篇
自然地理   165篇
  2020年   15篇
  2019年   26篇
  2018年   48篇
  2017年   31篇
  2016年   30篇
  2015年   31篇
  2014年   54篇
  2013年   123篇
  2012年   61篇
  2011年   76篇
  2010年   51篇
  2009年   63篇
  2008年   75篇
  2007年   60篇
  2006年   54篇
  2005年   60篇
  2004年   79篇
  2003年   54篇
  2002年   49篇
  2001年   36篇
  2000年   30篇
  1999年   30篇
  1998年   22篇
  1997年   20篇
  1996年   25篇
  1995年   20篇
  1994年   21篇
  1993年   15篇
  1992年   22篇
  1991年   16篇
  1990年   17篇
  1989年   16篇
  1988年   20篇
  1987年   28篇
  1986年   30篇
  1985年   37篇
  1984年   35篇
  1983年   33篇
  1982年   26篇
  1981年   32篇
  1980年   32篇
  1979年   32篇
  1978年   34篇
  1977年   31篇
  1976年   15篇
  1975年   13篇
  1974年   11篇
  1973年   23篇
  1972年   18篇
  1971年   23篇
排序方式: 共有1862条查询结果,搜索用时 31 毫秒
101.
An evolving convective Arctic planetary boundary layer (PBL) containing longitudinal roll vortices (rolls) was observed with aircraft data during the 1983 Marginal Ice Zone Experiment and the 1984 Arctic Cyclone Experiment.The PBL is observed to grow rapidly as the very cold and dry air flows off the ice over the relatively warm water. There is very large sensible heat flux, a result of the large surface-air temperature differences. Coherent structures were identified in these PBL's by use of power, coherence squared and phase spectra of the data. A systematic method of separating the rolls from organized thermal plumes was devised, based on theoretical characteristics for roll circulations and the resulting modified mean wind profile. The rapid mixing by the rolls aids in the establishment of equilibrium and an observed adiabatic modified mean Ekman layer. Rolls that form in a thermally neutral atmosphere over ice have different characteristics than those that appear in the unstable stratification over water. The rolls become increasingly more convective in character with distance from the ice edge. They have aspect ratios (wavelength/PBL height) that decrease with distance from the ice edge in agreement with linear theory. This is in contrast to the cloud street wavelength to inversion height ratio which is observed to increase downwind from the ice edge.  相似文献   
102.
Recent models of chemical weathering in alpine glacial meltwaters suggest that sulphide oxidation is a major source of solute in the distributed component of the subglacial hydrological system. This reaction requires O2, and may lower dissolved oxygen levels to below saturation with respect to the atmosphere. This should result in an inverse association between SO72- and dissolved oxygen saturation. However, measurements of O2 saturation in bulk meltwaters draining the Haut Glacier d'Arolla, Switzerland, show that there is a positive association between SO42- and O2 saturation. The O2 content of glacial meltwaters depends on the initial content of snow and icemelt, which may be controlled by the rate of melting, and the kinetic balance between O2 losses (e.g. sulphide oxidation, microbial respiration) and gains (e.g. diffusion of O2 into solution).  相似文献   
103.
104.
To determine the genetic structure of the bay anchovy (Anchoa mitchilli) within Chesapeake Bay, 16 isozyme systems encoding 21 loci for 20 population were examined using horizontal starch gel electrophoresis. Contingency Chisquare analysis revealed significant allelic frequency differences at nine loci (AAT-1, AAT-2, ALD-1, CPK-2, GAP-1, GLY-1, LDH-1, MDH-1, and MDH-2). Two loci, ALD-1 and MDH-1, were responsible for nine of 14 tests not conforming to Hardy-Weinberg expectations, with some of these deviations attributed to possible scoring and/or sampling error. Estimates for mean average heterozygosity were relatively high, ranging from 0.40 to 0.096, with 33–57% of the loci polymorphic. A low Fst value (0.041) along with high genetic identity estimates (I=0.997) indicated little substructuring of bay anchovy populations within Chesapeake Bay.  相似文献   
105.
106.
We have made use of the nearly complete linear polarization of synchrotron radiation to study the polarization dependence of X-ray absorption near-edge structure (XANES) and extended fine structure (EXAFS) in oriented single crystals of gillespite (BaFe2+ Si4O10; Fe2 + in square-planar coordination, point symmetry C 4), anatase (TiO2; Ti4+ in octahedral coordination, point symmetry D 2d), and epidote (Ca2(Al, Fe3+)3SiO4)3(OH); Fe3+ in distorted octahedral coordination, point symmetry (C s). For gillespite, the Fe K-XANES spectrum varies strongly with E-vector orientation of the incident X-ray beam. When the E-vector lies in the plane of the FeO4 group (i.e., perpendicular to the c-axis), multiple-scattering features at 7127 and 7131 eV intensify, whereas when the E-vector is perpendicular to the plane of the FeO4 group (i.e., parallel to the c-axis), a strongly-polarized 1s to 4p bound state transition occurs at 7116 eV and a localized continuum resonance occurs at 7122 eV. The Fe-K-EXAFS spectrum of gillespite is also highly polarization dependent. When the E-vector is perpendicular to c, all four nearest-neighbor oxygens around Fe2+ contribute to the EXAFS signal; when E is parallel to c, the EXAFS signal from nearest-neighbors is reduced by at least 86%. The unpolarized Ti K-XANES spectrum of anatase has three relatively strong pre-edge features at 4967.1, 4969.9, and 4972.7 eV which have resisted definitive interpretation in past studies. The lowest energy feature has a strong xy polarization dependence, suggesting a large amount of 4p x,y character, and it is also very sharp, indicating a well-defined transition energy. Both of these observations are consistent with an excitonic state with a binding energy of 2.8 eV. The two higher energy features, which are characteristic of octahedrally-coordinated Ti4+, show little polarization dependence and are probably due to 1s to 3d bound-state transitions, with a small degree of np character in the final state wavefunction. Interpretation of the polarization dependence of Fe K-XANES spectra for epidote is not as straightforward due to the lower space group symmetry (P21/m) relative to gillespite (P4/ncc) and anatase (I41/amd) and the lower point group symmetry (C s) of the M(3) site which contains most of the Fe3+ in the epidote structure. However, the presence of a shoulder at 7121 eV in the E parallel to b spectrum and its absence in the E normal to bc spectrum are consistent with it being a 1s to 4p z bound-state transition. Strong, weakly x, y polarized features near 7126 eV in both spectra are most likely due to localized continuum transitions. Also, the 1s to 3d pre-edge intensity varies in intensity with E-vector orientation which is consistent with displacement of Fe3+ from the center of the M(3) octahedral site. Analysis of EXAFS spectra of epidote in these two polarizations yields bond distances which are within 0.04 Å of previous single-crystal X-ray diffraction analysis. This study demonstrates the utility of polarized X-ray absorption spectroscopy in quantifying the energies and orbital compositions of final state wavefunctions associated with various X-ray induced transitions in transition-metal containing minerals. It also shows that reasonably accurate M-O distances can be obtained for individual bonds oriented in crystallographically non-equivalent directions.  相似文献   
107.
Statistical ice cover models were used to project daily mean basin ice cover and annual ice cover duration for Lakes Superior and Erie. Models were applied to a 1951–80 base period and to three 30-year steady double carbon dioxide (2 × CO2) scenarios produced by the Geophysical Fluid Dynamics Laboratory (GFDL), the Goddard Institute of Space Studies (GISS), and the Oregon State University (OSU) general circulation models. Ice cover estimates were made for the West, Central, and East Basins of Lake Erie and for the West, East, and Whitefish Bay Basins of Lake Superior. Average ice cover duration for the 1951– 80 base period ranged from 13 to 16 weeks for individual lake basins. Reductions in average ice cover duration under the three 2 × CO2 scenarios for individual lake basins ranged from 5 to 12 weeks for the OSU scenario, 8 to 13 weeks for the GISS scenario, and 11 to 13 weeks for GFDL scenario. Winters without ice formation become common for Lake Superior under the GFDL scenario and under all three 2 × CO2 scenarios for the Central and East Basins of Lake Erie. During an average 2 × CO2 winter, ice cover would be limited to the shallow areas of Lakes Erie and Superior. Because of uncertainties in the ice cover models, the results given here represent only a first approximation and are likely to represent an upper limit of the extent and duration of ice cover under the climate change projected by the three 2 × CO2scenarios. Notwithstanding these limitations, ice cover projected by the 2 × CO2 scenarios provides a preliminary assessment of the potential sensitivity of the Great Lakes ice cover to global warming. Potential environmental and socioeconomic impacts of a 2 × CO2 warming include year-round navigation, change in abundance of some fish species in the Great Lakes, discontinuation or reduction of winter recreational activities, and an increase in winter lake evaporation.  相似文献   
108.
Phytoplankton is considered a key component mediating the ocean-atmospheric exchange of carbon dioxide and oxygen. Lab simulations which model biological responses to atmospheric change are difficult to translate into natural settings owing in part to the vertical migration of phytoplankton. In the sea this vertical migration acts to regulate actual carbon dioxide consumption. To capture some critical properties of this vertical material transfer, we monitored the effects of atmospheric CO2 on dense suspensions of bioconvecting microorganisms. Bioconvection refers to the spontaneous patterns of circulation which arise among such upwardly swimming cells as alga, protozoa, zoospore and large bacteria. Gravity, phototaxis and chemotaxis have all been implicated as affecting pattern-forming ability. The ability of a biologically active suspension to detect atmospheric changes offers a unique method to quantify organism adjustment and vertical migration. With increasing CO2, bioconvection patterns in alga (P. parva) and protozoa (T. pyriformis) lose their robustness, and surface cell populations retreat from the highest CO2 regions. Cell movement (both percent motile and mean velocity) generally diminishes. A general program of image analysis yields statistically significant variations in macroscopic migration patterns; both fractal dimension and various crystallographic parameters correlate strongly with carbon dioxide content.  相似文献   
109.
Variations in the distribution of mass within the atmosphere, and changes in the pattern of winds produce fluctuations in all three components of the angular momentum of the atmosphere on time-scales upwards of a few days. It, has been shown that variations in theaxial component of atmospheric angular momentum during the Special Observing Periods in the recent First GARP Global Experiment (FGGE, where GARP is the Global Atmospheric Research Programme) are well correlated with short-term changes in the length of the day. They are consistent with the total angular momentum of the atmosphere and solid Earth being conserved on short timescales (allowing for lunar and solar effects), without requiring significant angular momentum transfer between the Earth's liquid core and solid mantle on timescales of weeks or months. It has also been shown that fluctuations, in the equatorial components of atmospheric angular momentum make a major contribution to the observed wobble of the instantaneous pole of the Earth's rotation with respect to the Earth's crust. A necessary step in the investigation was a re-examination of the underlying theory of non-rigid body rotational dynamics and angular momentum exchange between the atmosphere and solid Earth. Since only viscous or topographic coupling between the atmosphere and solid Earth can transfer angular momentum, no atmospheric flow that everywhere satisfied inviscid equations (including, but not solely, geostrophic flow) could affect the rotation of a spherical solid Earth. New effective angular momentum functions were introduced in order to exploit the available data and allow for rotational and surface loading deformation of the Earth. A theoretical basis has now been established for future routine determinations of atmopheric, angular momentum fluctuations for the purpose of meteorological and geophysical research, including the assessment of the extent to which movements in the solid Earth associated with very large earthquakes contribute to the excitation of the Chandlerian wobble.  相似文献   
110.
The finite element method has often been used to simulate excavation. When the soil is linearly elastic, the results of excavation should be independent of the number of stages in the excavation process, and lack of such independence indicates an incorrect procedure. The simple direct method described in this paper provides the required independence in the case of linearly elastic materials, and hence can be used for multi-stage excavation in non-linear problems without excessive errors. However methods whose errors increase with the number of stages of excavation are quite unsuitable for non-linear problems. Alternative methods of analysis, errors arising from the inability of the elements to model adequately the stress gradients near the toe of the excavation and excavation adjacent to a diaphragm wall are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号