首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
大气科学   23篇
地球物理   1篇
海洋学   2篇
  2021年   1篇
  2016年   2篇
  2015年   1篇
  2014年   6篇
  2013年   5篇
  2012年   1篇
  2011年   2篇
  2010年   4篇
  2009年   2篇
  2007年   1篇
  2006年   1篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
21.
22.
23.
In this study, we examine the relationship between the number of tropical cyclones (TCs) in the western North Pacific and the tropical Pacific sea surface temperature (SST) during the main TC season (July–November) for the period of 1965–2006. Results show that there are periods when TC frequency and the tropical Pacific SST are well correlated and periods when the relationship breaks down. Therefore, decadal variation is readily apparent in the relationship between the TC frequency and the SST variations in the tropical Pacific. We further examine the oceanic and atmospheric states in the two periods (i.e., 1979–1989 vs. 1990–2000) when the marked contrast in the correlation between the TC frequency and the tropical Pacific SST is observed. Before 1990, the analysis indicates that oceanic conditions largely influenced anomalous TC frequency, whereas atmospheric conditions had little impact. After 1990, there the reverse appears to be the case, i.e., atmospheric conditions drive anomalous TC frequency and oceanic conditions are relatively unimportant. A role of atmosphere and ocean in relation to the TC development in the western North Pacific changes, which is consistent with the change of the correlations between the TC frequency and the tropical Pacific SST.  相似文献   
24.
Due to the dramatic increase in the global mean surface temperature (GMST) during the twentieth century, the climate science community has endeavored to determine which mechanisms are responsible for global warming. By analyzing a millennium simulation (the period of 1000–1990 ad) of a global climate model and global climate proxy network dataset, we estimate the contribution of solar and greenhouse gas forcings on the increase in GMST during the present warm period (1891–1990 ad). Linear regression analysis reveals that both solar and greenhouse gas forcing considerably explain the increase in global mean temperature during the present warm period, respectively, in the global climate model. Using the global climate proxy network dataset, on the other hand, statistical approach suggests that the contribution of greenhouse gas forcing is slightly larger than that of solar forcing to the increase in global mean temperature during the present warm period. Overall, our result indicates that the solar forcing as well as the anthropogenic greenhouse gas forcing plays an important role to increase the global mean temperature during the present warm period.  相似文献   
25.
In order to examine the changes in Walker circulation over the recent decades, we analyzed the sea surface temperature (SST), deep convective activities, upper tropospheric moistening, sea level pressure (SLP), and effective wind in the boundary layer over the 30-year period of 1979–2008. The analysis showed that the eastern tropical Pacific has undergone cooling while the western Pacific has undergone warming over the past three decades, causing an increase in the east–west SST gradient. It is indicated that the tropical atmosphere should have responded to these SST changes; increased deep convective activities and associated upper tropospheric moistening over the western Pacific ascending region, increased SLP over the eastern Pacific descending region in contrast to decreased SLP over the western Pacific ascending region, and enhanced easterly wind in the boundary layer in response to the SLP change. These variations, recognized from different data sets, occur in tandem with each other, strongly supporting the intensified Walker circulation over the tropical Pacific Ocean. Since the SST trend was attributed to more frequent occurrences of central Pacific-type El Niño in recent decades, it is suggested that the decadal variation of El Niño caused the intensified Walker circulation over the past 30 years. An analysis of current climate models shows that model results deviate greatly from the observed intensified Walker circulation. The uncertainties in the current climate models may be due to the natural variability dominating the forced signal over the tropical Pacific during the last three decades in the twentieth century climate scenario runs by CMIP3 CGCMs.  相似文献   
26.
The Pacific decadal oscillation (PDO) is defined as the first empirical orthogonal function (EOF) mode of the North Pacific sea surface temperature anomalies. In this study, we reconstructed the PDO using the first-order autoregressive model from various climate indices representing the El Niño-Southern oscillation (ENSO), Aleutian Low (AL), sea surface height (SSH), and thermocline depth over the Kuroshio–Oyashio extension (KOE) region. The climate indices were obtained from observation and twentieth-century simulations of the eight coupled general circulation models (CGCMs) participating in the Climate Model Intercomparison Project Phase III (CMIP3). In this manner, we quantitatively assessed the major climate components generating the PDO using observation and models. Based on observations, the PDO pattern in the central to eastern North Pacific was accurately reconstructed by the AL and ENSO indices, and that in the western North Pacific was best reconstructed by the SSH and thermocline indices. In the CMIP3 CGCMs, the relative contribution of each component to the generation of the PDO varied greatly from model to model, and observations, although the PDO patterns from most of the models were similar to the pattern observed. In the models, the PDO pattern in the eastern and western North Pacific were well reconstructed using the AL and SSH indices, respectively. However, the PDO pattern reconstructed by the ENSO index was quite different from the observed pattern, which was possibly due to the model's common deficiency in simulating the amplitude and location of the ENSO. Furthermore, the differences in the contribution of the KOE thermocline index between the observed pattern and most of the models indicated that the PDO pattern associated with ocean wave dynamics is not properly simulated by most models. Therefore, the virtually well simulated PDO pattern by models is a result of physically inconsistent processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号