首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   630篇
  免费   26篇
  国内免费   3篇
测绘学   9篇
大气科学   54篇
地球物理   135篇
地质学   286篇
海洋学   31篇
天文学   99篇
综合类   1篇
自然地理   44篇
  2023年   5篇
  2022年   5篇
  2021年   10篇
  2020年   17篇
  2019年   17篇
  2018年   19篇
  2017年   30篇
  2016年   31篇
  2015年   31篇
  2014年   20篇
  2013年   39篇
  2012年   24篇
  2011年   37篇
  2010年   36篇
  2009年   28篇
  2008年   24篇
  2007年   29篇
  2006年   26篇
  2005年   19篇
  2004年   15篇
  2003年   12篇
  2002年   13篇
  2001年   6篇
  2000年   12篇
  1999年   6篇
  1998年   7篇
  1997年   6篇
  1996年   5篇
  1995年   11篇
  1994年   8篇
  1993年   7篇
  1992年   4篇
  1990年   4篇
  1989年   3篇
  1984年   4篇
  1982年   3篇
  1979年   8篇
  1978年   7篇
  1973年   3篇
  1970年   4篇
  1966年   2篇
  1965年   2篇
  1962年   4篇
  1960年   2篇
  1955年   2篇
  1954年   2篇
  1953年   2篇
  1948年   5篇
  1931年   2篇
  1921年   2篇
排序方式: 共有659条查询结果,搜索用时 31 毫秒
11.
12.
Preservation/exhumation of ultrahigh-pressure subduction complexes   总被引:14,自引:0,他引:14  
W.G. Ernst   《Lithos》2006,92(3-4):321-335
Ultrahigh-pressure (UHP) metamorphic terranes reflect subduction of continental crust to depths of 90–140 km in Phanerozoic contractional orogens. Rocks are intensely overprinted by lower pressure mineral assemblages; traces of relict UHP phases are preserved only under kinetically inhibiting circumstances. Most UHP complexes present in the upper crust are thin, imbricate sheets consisting chiefly of felsic units ± serpentinites; dense mafic and peridotitic rocks make up less than  10% of each exhumed subduction complex. Roundtrip prograde–retrograde PT paths are completed in 10–20 Myr, and rates of ascent to mid-crustal levels approximate descent velocities. Late-stage domical uplifts typify many UHP complexes.

Sialic crust may be deeply subducted, reflecting profound underflow of an oceanic plate prior to collisional suturing. Exhumation involves decompression through the PT stability fields of lower pressure metamorphic facies. Scattered UHP relics are retained in strong, refractory, watertight host minerals (e.g., zircon, pyroxene, garnet) typified by low rates of intracrystalline diffusion. Isolation of such inclusions from the recrystallizing rock matrix impedes back reaction. Thin-aspect ratio, ductile-deformed nappes are formed in the subduction zone; heat is conducted away from UHP complexes as they rise along the subduction channel. The low aggregate density of continental crust is much less than that of the mantle it displaces during underflow; its rapid ascent to mid-crustal levels is driven by buoyancy. Return to shallow levels does not require removal of the overlying mantle wedge. Late-stage underplating, structural contraction, tectonic aneurysms and/or plate shallowing convey mid-crustal UHP décollements surfaceward in domical uplifts where they are exposed by erosion. Unless these situations are mutually satisfied, UHP complexes are completely transformed to low-pressure assemblages, obliterating all evidence of profound subduction.  相似文献   

13.
Seismic, sidescan sonar, bathymetric multibeam and ODP (Ocean Drilling Program) data obtained in the submarine channel between the volcanic islands of Gran Canaria and Tenerife allow to identify constructive features and destructive events during the evolution of both islands. The most prominent constructive features are the submarine island flanks being the acoustic basement of the seismic images. The build-up of Tenerife started following the submarine stage of Gran Canaria because the submarine island flank of Tenerife onlaps the steeper flank of Gran Canaria. The overlying sediments in the channel between Gran Canaria and Tenerife are chaotic, consisting of slumps, debris flow deposits, syn-ignimbrite turbidites, ash layers, and other volcaniclastic rocks generated by eruptions, erosion, and flank collapse of the volcanoes. Volcanic cones on the submarine island flanks reflect ongoing submarine volcanic activity. The construction of the islands is interrupted by large destructive events, especially by flank collapses resulting in giant landslides. Several Miocene flank collapses (e.g., the formation of the Horgazales basin) were identified by combining seismic and drilling data whereas young giant landslides (e.g., the Güimar debris avalanche) are documented by sidescan, bathymetric and drilling data. Sediments are also transported through numerous submarine canyons from the islands into the volcaniclastic apron. Seismic profiles across the channel do not show a major offset of reflectors. The existence of a repeatedly postulated major NE-SW-trending fault zone between Gran Canaria and Tenerife is thus in doubt. The sporadic earthquake activity in this area may be related to the regional stress field or the submarine volcanic activity in this area. Seismic reflectors cannot be correlated through the channel between the sedimentary basins north and south of Gran Canaria because the channel acts as sediment barrier. The sedimentary basins to the north and south evolved differently following the submarine growth of Gran Canaria and Tenerife in the Miocene.  相似文献   
14.
15.
With a new type of ion microprobe, the NanoSIMS, we determined the oxygen isotopic compositions of small (<1μm) oxide grains in chemical separates from two CM2 carbonaceous meteorites, Murray and Murchison. Among 628 grains from Murray separate CF (mean diameter 0.15 μm) we discovered 15 presolar spinel and 3 presolar corundum grains, among 753 grains from Murray separate CG (mean diameter 0.45 μm) 9 presolar spinel grains, and among 473 grains from Murchison separate KIE (mean diameter 0.5 μm) 2 presolar spinel and 4 presolar corundum grains. The abundance of presolar spinel is highest (2.4%) in the smallest size fraction. The total abundance in the whole meteorite is at least 1 ppm, which makes spinel the third-most abundant presolar grain species after nanodiamonds (if indeed a significant fraction of them are presolar) and silicon carbide. The O-isotopic distribution of the spinel grains is very similar to that of presolar corundum, the only statistically significant difference being that there is a larger fraction of corundum grains with large 17O excesses (17O/16O > 1.5 × 10−3), which indicates parent stars with masses between 1.8 and 4.5 M.  相似文献   
16.
Thin mafic dikes, possibly correlative with the Independence dike swarm of SE California, transect uppermost Proterozoic–Cambrian metasedimentary strata in the White-Inyo Range. Textures and bulk-rock chemistry indicate that the protoliths were diabases and microdiorites, accompanied by Ca + Mg + Fe +Ni + Cr-rich hornblende (± minor augite) cumulates. Analytical data suggest crystal settling and fractionation at shallow depths. Most of the dikes lie in the mapped aureoles of – and were metamorphosed by – voluminous Late Jurassic granitoid plutons; however, a few metadikes cut these plutons and must have been recrystallized during the emplacement of Cretaceous granitic stocks. The mafic metadikes thus include members of two or more temporally distinct suites, pre-Late Jurassic, and latest Jurassic–Cretaceous. Neoblastic mineral assemblages and element partitioning within these nonfoliated mafic metadikes reflect lower-to-upper greenschist facies overprints; metamorphic parageneses, coincident with those developed in the metasedimentary wallrocks, are defined by the production of chlorite, biotite, white mica, epidote, and actinolite, and by albitization of the igneous plagioclase. Based on analytical and mineralogic data obtained in this study, the following conclusions regarding subsolidus recrystallization of the mafic metadikes are advanced: (1) Newly grown minerals and phase assemblages are systematic in their areal distributions. (2) Metamorphic grade increases chiefly toward the north and east, toward the Late Jurassic granitoids. (3) Element fractionation among coexisting neoblastic phases is regular, and compatible with a close approach to chemical equilibrium. (4) Assemblages 3–5 km from the granitic intrusive contacts reflect lowermost greenschist facies physical conditions. (5) Investigated mafic dikes exhibit mineral parageneses isofacial with the regional/contact metamorphic assemblages previously documented for the enclosing pre-Mesozoic clastic country rocks. Clearly, mafic dikes of several ages of injection and recrystallization are present in the central White-Inyo Range, making correlation with the Independence dike swarm problematic. In any case, the dikes record localized contact metamorphism that took place sporadically over portions of an approximately 100 million year interval. Received: 13 March 1996 / Accepted: 24 December 1996  相似文献   
17.
Geological mapping and diamond exploration in northern Quebec and Labrador has revealed an undeformed ultramafic dyke swarm in the northern Torngat Mountains. The dyke rocks are dominated by an olivine-phlogopite mineralogy and contain varying amounts of primary carbonate. Their mineralogy, mineral compositional trends and the presence of typomorphic minerals (e.g. kimzeyitic garnet), indicate that these dykes comprise an ultramafic lamprophyre suite grading into carbonatite. Recognized rock varieties are aillikite, mela-aillikite and subordinate carbonatite. Carbonatite and aillikite have in common high carbonate content and a lack of clinopyroxene. In contrast, mela-aillikites are richer in mafic silicate minerals, in particular clinopyroxene and amphibole, and contain only small amounts of primary carbonate. The modal mineralogy and textures of the dyke varieties are gradational, indicating that they represent end-members in a compositional continuum.

The Torngat ultramafic lamprophyres are characterized by high but variable MgO (10–25 wt.%), CaO (5–20 wt.%), TiO2 (3–10 wt.%) and K2O (1–4 wt.%), but low SiO2 (22–37 wt.%) and Al2O3 (2–6 wt.%). Higher SiO2, Al2O3, Na2O and lower CO2 content distinguish the mela-aillikites from the aillikites. Whereas the bulk rock major and trace element concentrations of the aillikites and mela-aillikites overlap, there is no fractional crystallization relation between them. The major and trace element characteristics imply related parental magmas, with minor olivine and Cr-spinel fractionation accounting for intra-group variation.

The Torngat ultramafic lamprophyres have a Neoproterozoic age and are spatially and compositionally closely related with the Neoproterozoic ultramafic lamprophyres from central West Greenland. Ultramafic potassic-to-carbonatitic magmatism occurred in both eastern Laurentia and western Baltica during the Late Neoproterozoic. It can be inferred from the emplacement ages of the alkaline complexes and timing of Late Proterozoic processes in the North Atlantic region that this volatile-rich, deep-seated igneous activity was a distal effect of the breakup of Rodinia. This occurred during and/or after the rift-to-drift transition that led to the opening of the Iapetus Ocean.  相似文献   

18.
Permafrost records, accessible at outcrops along the coast of Oyogos Yar at the Dmitry Laptev Strait, NE-Siberia, provide unique insights into the environmental history of Western Beringia during the Last Interglacial. The remains of terrestrial and freshwater organisms, including plants, coleopterans, chironomids, cladocerans, ostracods and molluscs, have been preserved in the frozen deposits of a shallow paleo-lake and indicate a boreal climate at the present-day arctic mainland coast during the Last Interglacial. Terrestrial beetle and plant remains suggest the former existence of open forest-tundra with larch (Larix dahurica), tree alder (Alnus incana), birch and alder shrubs (Duschekia fruticosa, Betula fruticosa, Betula divaricata, Betula nana), interspersed with patches of steppe and meadows. Consequently, the tree line was shifted to at least 270 km north of its current position. Aquatic organisms, such as chironomids, cladocerans, ostracods, molluscs and hydrophytes, indicate the formation of a shallow lake as the result of thermokarst processes. Steppe plants and beetles suggest low net precipitation. Littoral pioneer plants and chironomids indicate intense lake level fluctuations due to high evaporation. Many of the organisms are thermophilous, indicating a mean air temperature of the warmest month that was greater than 13 °C, which is above the minimum requirements for tree growth. These temperatures are in contrast to the modern values of less than 4 °C in the study area. The terrestrial and freshwater organism remains were found at a coastal exposure that was only 3.5 m above sea level and in a position where they should have been under sea during the Last Interglacial when the global sea level was 6–10 m higher than the current levels. The results suggest that during the last warm stage, the site was inland, and its modern coastal situation is the result of tectonic subsidence.  相似文献   
19.
The synthesis of experimental understanding of catchment behaviour and its translation into qualitative perceptual models is an important objective of hydrological sciences. We explore this challenge by examining the cumulative understanding of the hydrology of three experimental catchments and how it evolves through the application of different investigation techniques. The case study considers the Huewelerbach, Weierbach and Wollefsbach headwater catchments of the Attert basin in Luxembourg. Subsurface investigations including bore holes and pits, analysis of soil samples and Electrical Resistivity Tomography measurements are presented and discussed. Streamflow and tracer data are used to gain further insights into the streamflow dynamics of the catchments, using end‐member mixing analysis and hydrograph separation based on dissolved silica and electrical conductivity. We show that the streamflow generating processes in all three catchments are controlled primarily by the subsolum and underlying bedrock. In the Huewelerbach, the permeable sandstone formation supports a stable groundwater component with little seasonality, which reaches the stream through a series of sources at the contact zone with the impermeable marls formation. In the Weierbach, the schist formation is relatively impermeable and supports a ‘fill and spill’‐type of flow mechanism; during wet conditions, it produces a delayed response dominated by pre‐event water. In the Wollefsbach, the impermeable marls formation is responsible for a saturation‐excess runoff generating process, producing a fast and highly seasonal response dominated by event water. The distinct streamflow generating processes of the three catchments are represented qualitatively using perceptual models. The perceptual models are in turn translated into quantitative conceptual models, which simulate the hydrological processes using networks of connected reservoirs and transfer functions. More generally, the paper illustrates the evolution of perceptual models based on experimental fieldwork data, the translation of perceptual models into conceptual models and the value of different types of data for processes understanding and model representation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
20.
New pseudosection modelling was applied to better constrain the P–T conditions and evolution of glaucophane‐bearing rocks in the Tamayen block of the Yuli belt, recognized as the world's youngest known blueschist complex. Based on the predominant clinoamphibole, textural relationships, and mineral compositions, these glaucophane‐bearing high‐P rocks can be divided into four types. We focused on the three containing garnet. The chief phase assemblages are (in decreasing mode): amphibole + quartz + epidote + garnet + chlorite + rutile/titanite (Type‐I), phengite + amphibole + quartz + garnet + chlorite + epidote + titanite + biotite + magnetite (Type‐II), and amphibole + quartz + albite + epidote + garnet + rutile + hematite + titanite (Type‐III). Amphibole exhibits compositional zoning from core to rim as follows: glaucophane → pargasitic amphibole → actinolite (Type‐I), barroisite → Mg‐katophorite/taramite → Fe‐glaucophane (Type‐II), glaucophane → winchite (Type‐III). Using petrographic data, mineral compositions and Perple_X modelling (pseudosections and superimposed isopleths), peak P–T conditions were determined as 13 ± 1 kbar and 550 ± 40 °C for Type‐I, 10.5 ± 0.5 kbar and 560 ± 30 °C for Type‐II (thermal peak) and 11 ± 1 kbar and 530 ± 30 °C for Type‐III. The calculations yield higher pressures and temperatures than previously thought; the difference is ~1–6 kbar and 50–200 °C. The three rock types record similar P–T retrograde paths with clockwise trajectories; all rocks followed trajectories with substantial pressure decrease under near‐isothermal conditions (Type‐I and Type‐III), with the probable exception of Type‐II where decompression followed colder geotherms. The P–T paths suggest a tectonic environment in which the rocks were exhumed from maximum depths of ~45 km within a subduction channel along a relative cold geothermal gradient of ~11–14 °C km?1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号