首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   7篇
测绘学   1篇
地球物理   34篇
地质学   12篇
海洋学   11篇
天文学   15篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2017年   3篇
  2016年   3篇
  2015年   2篇
  2014年   3篇
  2013年   1篇
  2012年   1篇
  2011年   3篇
  2010年   2篇
  2009年   4篇
  2008年   3篇
  2007年   2篇
  2006年   3篇
  2005年   3篇
  2004年   1篇
  2003年   3篇
  2002年   6篇
  2001年   3篇
  2000年   3篇
  1998年   2篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1977年   1篇
  1973年   2篇
  1964年   1篇
排序方式: 共有73条查询结果,搜索用时 15 毫秒
61.
Abstract— The noble gases He, Ne, Ar, Kr, and Xe were measured in 27 individual Antarctic micrometeorites (AMMs) in the size range 60 to 250 μm that were collected at the Dome Fuji Station. Eleven of the AMMs were collected in 1996 (F96 series) and 16 were collected in 1997 (F97 series). One of the F97 AMMs is a totally melted spherule, whereas all other particles are irregular in shape. Noble gases were extracted using a Nd‐YAG continuous wave laser with an output power of 2.5‐3.5 W for ?5 min. Most particles released measurable amounts of noble gases. 3He/4He ratios are determined for 26 AMMs ((0.85‐9.65) × 10?4). Solar energetic particles (SEP) are the dominant source of helium in most AMMs rather than solar wind (SW) and cosmogenic He. Three samples had higher 3He/4He ratios compared to that of SW, showing the presence of spallogenic 3He. The Ne isotopic composition of most AMMs resembled that of SEP as in the case of helium. Spallogenic 21Ne was detected in three samples, two of which had extremely long cosmic‐ray exposure ages (> 100 Ma), calculated by assuming solar cosmic‐ray (SCR) + galactic cosmic‐ray (GCR) production. These two particles may have come to Earth directly from the Kuiper Belt. Most AMMs had negligible amounts of cosmogenic 21 Ne and exposure ages of <1 Ma. 40Ar/36Ar ratios for all particles (3.9–289) were lower than that of the terrestrial atmosphere (296), indicating an extraterrestrial origin of part of the Ar with a very low 40Ar/36Ar ratio plus some atmospheric contamination. Indeed, 40Ar/36Ar ratios for the AMMs are higher than SW, SEP, and Q‐Ar values, which is explained by the presence of atmospheric 40Ar. The average 38Ar/36Ar ratio of 24 AMMs (0.194) is slightly higher than the value of atmospheric or Q‐Ar, suggesting the presence of SEP‐Ar which has a relatively high 38Ar/36Ar ratio. According to the elemental compositions of the heavy noble gases, Dome Fuji AMMs can be classified into three groups: chondritic (eight particles), air‐affected (nine particles), and solar‐affected (eight particles). The eight AMMs classified as chondritic preserve the heavy noble gas composition of primordial trapped component due to lack of atmospheric adsorption and solar implantation. The average of 129Xe/132Xe ratio for the 16 AMMs not affected by atmospheric contamination (1.05) corresponds to the values in matrices of carbonaceous chondrites (?1.04). One AMM, F96DK038, has high 129Xe/132Xe in excess of this ratio. Our results imply that most Dome Fuji AMMs originally had chondritic heavy noble gas compositions, and carbonaceous chondrite‐like objects are appropriate candidate sources for most AMMs.  相似文献   
62.
Abstract— From November 1998 to January 1999, the 39th Japanese Antarctic Research Expedition (JARE) conducted a large‐scale micrometeorite collection at 3 areas in the meteorite ice field around the Yamato Mountains, Antarctica. The Antarctic micrometeorites (AMMs) collected were ancient cosmic dust particles. This is in contrast with the Dome Fuji AMMs, which were collected previously from fresh snows in 1996 and 1997 and which represent modern micrometeorites. To determine the noble gas concentrations and isotopic compositions of individual AMMs, noble gas analyses were carried out using laser‐gas extraction for 35 unmelted Yamato Mountains AMMs and 3 cosmic spherules. X‐ray diffraction analyses were performed on 13 AMMs before the noble gas measurement and mineral compositions were determined. AMMs are classified into 4 main mineralogical groups, defined from the heating they suffered during atmospheric entry. Heating temperatures of AMMs, inferred from their mineral compositions, are correlated with 4He concentrations and reflect the effect of degassing during atmospheric entry. Jarosite, an aqueous alteration product, is detected for 4 AMMs, indicating the aqueous alteration during long‐time storage in Antarctic ice. Jarosite‐bearing AMMs have relatively low concentrations of 4He, which is suggestive of loss during the alteration. High 3He/4He ratios are detected for AMMs with high 20Ne/4He ratios, showing both cosmogenic 3He and preferential He loss. SEP (solar energetic particles)‐He and Ne, rather than the solar wind (SW), were dominant in AMMs, presumably showing a preferential removal of the more shallowly implanted SW by atmospheric entry heating. The mean 20Ne/22Ne ratio is 11.27 ± 0.35, which is close to the SEP value of 11.2. Cosmogenic 21Ne is not detected in any of the particles, which is probably due to the short cosmic ray exposure ages. Ar isotopic compositions are explained by 3‐component mixing of air, Q, and SEP‐Ar. Ar isotopic compositions can not be explained without significant contributions of Q‐Ar. SEP‐Ne contributed more than 99% of the total Ne. As for 36Ar and 38Ar, the abundance of the Q component is comparable to that of the SEP component. 84Kr and 132Xe are dominated by the primordial component, and solar‐derived Xe is almost negligible.  相似文献   
63.
Abstract Isotopic compositions of He, Ne and Ar were measured on Plio–Quaternary alkaline basalts of Marib–Sirwah and Shuqra volcanic fields in Yemen, south-western Arabian Peninsula. Very high 3He/4He isotope ratios were found in olivine phenocrysts of some Quaternary alkaline basalts in both volcanic fields, located on the margin of the dispersed Afar mantle plume, compared with the Afar–Ethiopian province in the center of the mantle plume. This suggests that the Afar mantle plume source may consist of common component (C or focal zone (FOZO)) with variable primordial 3He/4He ratio rather than high μ mantle (HIMU) component. The three component mixing C as the Afar mantle plume, depleted mantle (DM) as upper mantle and lithospheric mantle with a hybrid enriched mantle I–II (EM I–EM II) characteristics may be adequate to explain He–Sr–Nd–Pb isotope variation for the Afar–Arabian Cenozoic volcanics. The occurrence of high 3He/4He ratios in the Marib–Sirwah volcanic field appears to show that the primitive basaltic magma, derived from the margin of the dispersed trous-like Afar mantle plume during 15–0 Ma, was not by contamination of lithospheric and upper mantle materials in comparison with that from the center of the Afar mantle plume as a result of relatively low thermal anomaly.  相似文献   
64.
The porphyry Cu deposits at Waisoi in Namosi district, Viti Levu are separated into two deposits: the Waisoi East deposit and the Waisoi West deposit. In the Waisoi East deposit, quartz porphyry is exposed and in the Waisoi West deposit, diorite porphyry is sporadically exposed in addition to a small body of quartz porphyry. The mineralization in the Waisoi East deposit is characterized by the bornite–chalcopyrite–pyrite assemblage associated with traces of molybdenite and native gold. Polyphase fluid inclusions in stockwork quartz veinlets show homogenization temperatures ranging from 210 to >500°C. The high‐grade Cu mineralization in the Waisoi West deposit is characterized by the bornite–chalcopyrite–pyrite assemblage accompanied with sheeted and stockwork quartz veinlets. Polyphase fluid inclusions occasionally containing hematite flakes in quartz veinlets in the center of the Waisoi West deposit homogenize at temperatures ranging from 450°C to >500°C. However, fluid inclusions in stockwork quartz veinlets in the periphery, homogenize at lower temperatures around 210°C. Both in the Waisoi East and Waisoi West deposits, primary bornite–chalcopyrite–pyrite assemblage in the high Cu‐grade zone was deposited at the upper stability limit of chalcopyrite with respect to sulfur fugacity. Thus, the principal Cu mineralization at the Waisoi deposits occurred at a relatively high sulfur fugacity, that is, in a high‐sulfidation environment.  相似文献   
65.
Abstract Temporal–spatial variations in Late Cenozoic volcanic activity in the Chugoku area, southwest Japan, have been examined based on 108 newly obtained K–Ar ages. Lava samples were collected from eight Quaternary volcanic provinces (Daisen, Hiruzen, Yokota, Daikonjima, Sambe, Ooe–Takayama, Abu and Oki) and a Tertiary volcanic cluster (Kibi Province) to cover almost all geological units in the province. Including published age data, a total of 442 Cenozoic radiometric ages are now available. Across‐arc volcanic activity in an area approximately 500 km long and 150 km wide can be examined over 26 million years. The period corresponds to syn‐ and post‐back‐arc basin opening stages of the island arc. Volcanic activity began in the central part of the rear‐arc ca 26 Ma. This was followed by arc‐wide expansion at 20 Ma by eruption at two rear‐arc centers located at the eastern and western ends. Expansion to the fore‐arc occurred between 20 and 12 Ma. This Tertiary volcanic arc was maintained until 4 Ma with predominant alkali basalt centers. The foremost‐arc zone activity ceased at 4 Ma, followed by quiescence over the whole arc between 4 and 3 Ma. Volcanic activity resumed at 3 Ma, covering the entire rear‐arc area, and continued until the present to form a Quaternary volcanic arc. Adakitic dacite first occurred at 1.7 Ma in the middle of the arc, and spread out in the center part of the Quaternary volcanic arc. Alkali basalt activities ceased in the area where adakite volcanism occurred. Fore‐arc expansion of the volcanic arc could be related to the upwelling and expansion of the asthenosphere, which caused opening of the Japan Sea. Narrowing of the volcanic zone could have been caused by progressive Philippine Sea Plate subduction. Deeper penetration could have caused melting of the slab and resulted in adakites. Volcanic history in the Late Cenozoic was probably controlled by the history of evolution of the upper mantle structure, coinciding with back‐arc basin opening and subsequent reinitiation of subduction.  相似文献   
66.
Abstract Elemental and isotopic compositions of noble gases extracted from the bore hole water in Osaka plain, central Japan were examined. The water samples were collected from four shallow bore holes (180-450 m) and seven deep bore holes (600-1370 m) which have been used for an urban resort hot spring zone. The water temperatures of the deep bore holes were 22-50°C and that of the shallow bore holes, 13-23°C. The elemental abundance patterns show the progressive enrichment of the heavier noble gases compared with the atmospheric noble gas composition except for He, which is heavily enriched in deep bore hole water samples. 3He/4He ratios from the bore holes reaching the Ryoke granitic basement were higher than the atmospheric value (1.4 × 10−6), indicating a release of mantle He through the basement. The highest value of 8.2 × 10−6 is in the range of arc volcanism. On the other hand, the bore holes in sedimentary rocks overlying the basement release He enriched in radiogenic 4He, resulted in a low 3He/4He ratio of 0.5 × 10−6. 4He/20Ne and 40Ar/36Ar ratios indicate that the air contamination is generally larger in shallow bore holes than in deep ones from each site. The helium enriched in mantle He is compatible with the previous work which suggested up-rising magma in 'Kinki Spot', the area of Osaka and western Wakayama, in spite of no volcanic activity in the area. A model to explain an initiation of magma generation beneath this area is presented.  相似文献   
67.
Annual examination of net-plankton biomass in dry weight, ash-free dry weight, organic carbon, and nitrogen weight at the Manazuru harbor, central Japan revealed that net-plankton samples from shallow coastal water contained considerable amount of ash (53±13% of dry weight) which would be caused by contamination of inorganic materials from re-suspendion of sediments, terrestrial runoff and chain-forming diatoms. Therefore, in coastal water, dry weight is inadequate fro determination of zooplankton biomass in volving the possibility of over-estimation. Practical estimation of net-plankton biomass in shallow coastal waters, ash-free dry weight, organic carbon, and/or nitrogen are more adequate.  相似文献   
68.
Uranium in coastal sediments of Tokyo Bay and Funka Bay   总被引:2,自引:0,他引:2  
The sediment cores from Tokyo Bay and Funka Bay were analyzed for U and its isotopic ratio,234U/238U, after dissolving them in 0.1 M HCl, and 30% H2O2 in 0.05 M HCl. A small fraction of U in the anoxic sediments was dissolved in 0.1M HCl and even the added yield tracer,232U, was lost. The isotopic ratio of H2O2 soluble U in the sediments was equal to that of seawater, suggesting that the H2O2 soluble U in the sediments is authigenic. The 6M HCl solution dissolved part of the lithogenic U besides the authigenic U. The depth profiles of U from the two bays resembled each other. The authigenic U comprised more than half of the total U even at the surface and increased with depth down to 70 cm, showing small maxima at about 20 cm. The concentration of refractory U was nearly constant with depth and similar to that of the pelagic sediments. The highest U concentration, 6 µg g–1 which was about 5 times that of the pelagic sediments, was observed in the layer between 70 and 160 cm depth in Tokyo Bay. The annual sedimentation rates of U in the Tokyo Bay sediments were 2.6 tons at the surface and 7.0 tons at the 70–160 cm depth. The increase in U with depth should be due to the deposition of interstitial U either diffusing downward from the surface indicating the trapping of seawater U, or otherwise diffusing upward from the deeper layer indicating the internal cycling of U within the sediments.  相似文献   
69.
When one end of an air-dry igneous rock block was uniaxially loaded in laboratory, there appeared an electromotive force that made electric currents flow from the stressed volume to the unstressed volume. Quartz-free rocks such as gabbro also generated this force, stronger than quartz-bearing rocks such as granite. This indicates that the piezoelectric effect of quartz and the electrokinetic effect of pore water do not make a large contribution toward generating the electromotive force. We focus on peroxy bond that is one of the abundant lattice defects in igneous rock-forming minerals. When mechanical loading deforms the lattice structure around this defect and breaks its bond, its energy levels change and act like an accepter. As an electron is trapped at this defect from a neighbor O2- site, a positive hole is activated there. They attempt to diffuse toward the unstressed volume through the valence band and are simultaneously affected by the attractive electric force with the electrons trapped in peroxy bonds. This leads to a polarization in the stressed volume and the generation of electromotive force between the stressed and unstressed volumes. Similar electromotive force may be generated in the Earth's crust where inhomogeneous stress/strain is changing.  相似文献   
70.
From September 20 to 22 in 1994, the vertical profiles of echo intensity and three-component velocities were measured with a bottom-mounted 300 kHz broadband acoustic Doppler current profiler (ADCP) in Beppu Bay in the Seto Inland Sea of Japan. A very strong thermocline was observed from 50 to 60 m. A pronounced diurnal cycle of backscatter strength (BS) was found above the thermocline. However, it was not found under the thermocline where there was a lack of dissolved oxygen. We suggest that the diurnal cycle of BS is caused by the vertical migration of zooplankton. The downward and upward migration occurred in early morning and late afternoon, respectively. The migration speeds estimated from BS isopleth displacements were about 1 cm s–1. Further, the contribution of turbidity (Tur) to BS was examined by separating out the effect of migrating zooplankton. There was a significant correlation between BS and turbidity under the thermocline. The maximum contributions of the Tur, migrating zooplankton and non-migrating plankton on BS were estimated at 3, 12, 25 dB, respectively. These data suggest that when using an ADCP to estimate Tur, it is very important to consider carefully the backscatter signal from zooplankton.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号