首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   8篇
  国内免费   2篇
地球物理   26篇
地质学   7篇
海洋学   11篇
天文学   15篇
综合类   2篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   3篇
  2015年   2篇
  2014年   3篇
  2013年   1篇
  2012年   1篇
  2011年   4篇
  2010年   1篇
  2009年   4篇
  2008年   3篇
  2007年   2篇
  2006年   3篇
  2005年   4篇
  2004年   1篇
  2003年   3篇
  2002年   5篇
  2001年   3篇
  2000年   2篇
  1998年   2篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1986年   1篇
  1981年   1篇
  1979年   1篇
排序方式: 共有61条查询结果,搜索用时 203 毫秒
1.
The Varotsos-Alexopoulos-Nomicos(VAN) method of short-term earthquake prediction was introduced in the 1980s. The VAN method enables estimation of the epicenter, magnitude and occurrence time of an impending earthquake by observing transient changes of the electric field of the Earth termed seismic electric signals(SES). Here, we present a few examples of SES observed in various earthquake prone areas worldwide.  相似文献   
2.
Three masses of the Chelyabinsk meteorite have been studied with a wide range of analytical techniques to understand the mineralogical variation and thermal history of the Chelyabinsk parent body. The samples exhibit little to no postentry oxidation via Mössbauer and Raman spectroscopy indicating their fresh character, but despite the rapid collection and care of handling some low levels of terrestrial contamination did nonetheless result. Detailed studies show three distinct lithologies, indicative of a genomict breccia. A light‐colored lithology is LL5 material that has experienced thermal metamorphism and subsequent shock at levels near S4. The second lithology is a shock‐darkened LL5 material in which the darkening is caused by melt and metal‐troilite veins along grain boundaries. The third lithology is an impact melt breccia that formed at high temperatures (~1600 °C), and it experienced rapid cooling and degassing of S2 gas. Portions of light and dark lithologies from Chel‐101, and the impact melt breccias (Chel‐102 and Chel‐103) were prepared and analyzed for Rb‐Sr, Sm‐Nd, and Ar‐Ar dating. When combined with results from other studies and chronometers, at least eight impact events (e.g., ~4.53 Ga, ~4.45 Ga, ~3.73 Ga, ~2.81 Ga, ~1.46 Ga, ~852 Ma, ~312 Ma, and ~27 Ma) are clearly identified for Chelyabinsk, indicating a complex history of impacts and heating events. Finally, noble gases yield young cosmic ray exposure ages, near 1 Ma. These young ages, together with the absence of measurable cosmogenic derived Sm and Cr, indicate that Chelyabinsk may have been derived from a recent breakup event on an NEO of LL chondrite composition.  相似文献   
3.
We observed tidal currents, turbulent energy dissipation and water column stratification at the entrance of a narrow strait (Neko Seto) in the Seto Inland Sea, Japan, using a free-falling turbulent microstructure profiler (TurboMAP) and acoustic Doppler current profiler (ADCP). The variation in turbulent energy dissipation at the entrance of the strait was not at quarter-diurnal frequency but at semi-diurnal frequency; turbulent energy dissipation was enhanced during the ebb tide, although it was moderate during the flood tide. This result is consistent with the results of Takasugi (1993), which showed the asymmetry of tidal energy loss during a semidiurnal tidal cycle using control volume analysis. It is suggested that significant turbulent energy dissipation is generated in the strait, which influences the properties of water outside the strait when tidal currents flow out from the strait.  相似文献   
4.
We report analyses of noble gases and Nd–Sr isotopes in mineral separates and whole rocks of late Pleistocene (< 0.2 Ma) monzonites from Ulleungdo, South Korea, a volcanic island within the back arc basin of the Japan island arc. A Rb–Sr mineral isochron age for the monzonites is 0.12 ± 0.01 Ma. K–Ar biotite ages from the same samples gave relatively concordant ages of 0.19 ± 0.01and 0.22 ± 0.01 Ma. 40Ar/39Ar yields a similar age of 0.29 ± 0.09 Ma. Geochemical characteristics of the felsic plutonic rocks, which are silica oversaturated alkali felsic rocks (av., 12.5 wt% in K2O + Na2O), are similar to those of 30 alkali volcanics from Ulleungdo in terms of concentrations of major, trace and REE elements. The initial Nd–Sr isotopic ratios of the monzonites (87Sr/86Sr = 0.70454–0.71264, 143Nd/144Nd = 0.512528–0.512577) are comparable with those of the alkali volcanics (87Sr/86Sr = 0.70466–0.70892, 143Nd/144Nd = 0.512521–0.512615) erupted in Stage 3 of Ulleungdo volcanism (0.24–0.47 Ma). The high initial 87Sr/86Sr values of the monzonites imply that seawater and crustally contaminated pre-existing trachytes may have been melted or assimilated during differentiation of the alkali basaltic magma.A mantle helium component (3He/4He ratio of up to 6.5 RA) associated with excess argon was found in the monzonites. Feldspar and biotite have preferentially lost helium during slow cooling at depth and/or during their transportation to the surface in a hot host magma. The source magma noble gas isotopic features are well preserved in fluid inclusions in hornblende, and indicate that the magma may be directly derived from subcontinental lithospheric mantle metasomatized by an ancient subduction process, or may have formed as a mixture of MORB-like mantle and crustal components. The radiometric ages, geochemical and Nd–Sr isotopic signatures of the Ulleungdo monzonites as well as the presence of mantle-derived helium and argon, suggests that these felsic plutonic rocks evolved from alkali basaltic magma that formed by partial melting of subcontinental lithospheric mantle beneath the back arc basin located along the active continental margin of the southeastern part of the Eurasian plate.  相似文献   
5.
Abstract— Noble gases in two ureilites, Kenna and Allan Hills (ALH) 78019, were measured with two extraction methods: mechanical crushing in a vacuum and heating. Large amounts of noble gases were released by crushing, up to 26.5% of 132Xe from ALH 78019 relative to the bulk concentration. Isotopic ratios of the crush‐released Ne of ALH 78019 resemble those of the trapped Ne components determined for some ureilites or terrestrial atmosphere, while the crush‐released He and Ne from Kenna are mostly cosmogenic. The crush‐released Xe of ALH 78019 and Kenna is similar in isotopic composition to Q gas, which indicates that the crush‐released noble gases are indigenous and not caused by contamination from terrestrial atmosphere. In contrast to the similarities in isotopic composition with the bulk samples, light elements in the crush‐released noble gases are depleted relative to Xe and distinct from those of each bulk sample. This depletion is prominent especially in the 20Ne/132Xe ratio of ALH 78019 and the 36Ar/132Xe ratio of Kenna. The values of measured 3He/21Ne for the gases released by crushing are significantly higher than those for heating‐released gases. This suggests that host phases of the crush‐released gases might be carbonaceous because cosmogenic Ne is produced mainly from elements with a mass number larger than Ne. Based on our optical microscopic observation, tabular‐foliated graphite is the major carbon mineral in ALH 78019, while Kenna contains abundant polycrystalline graphite aggregates and diamonds along with minor foliated graphite. There are many inclusions at the edge and within the interior of olivine grains that are reduced by carbonaceous material. Gaps can be seen at the boundary between carbonaceous material and silicates. Considering these petrologic and noble gas features, we infer that possible host phases of crush‐released noble gases are graphite, inclusions in reduction rims, and gaps between carbonaceous materials and silicates. The elemental ratios of noble gases released by crushing can be explained by fractionation, assuming that the starting noble gas composition is the same as that of amorphous carbon in ALH 78019. The crush‐released noble gases are the minor part of trapped noble gases in ureilites but could be an important clue to the thermal history of the ureilite parent body. Further investigation is needed to identify the host phases of the crush‐released noble gases.  相似文献   
6.
K–Ar ages of the Cenozoic basaltic rocks from the Far East region of Russia (comprising Sikhote-Alin and Sakhalin) are determined to obtain constraints on the tectono-magmatic evolution of the Eurasian margin by comparison with the Japanese Islands, Northeast China, and the formation of the back-arc basin. In the early Tertiary stage (54–26 Ma), the northwestward subduction of the Pacific Plate produced the active continental margin volcanism of Sikhote-Alin and Sakhalin, whereas the rift-type volcanism of Northeast China, inland part of the continent began to develop under a northeast–southwest-trending deep fault system. In the early Neogene (24–17 Ma), a large number of subduction-related volcanic rocks were erupted in connection with the Japan Sea opening. After an inactive interval of the volcanism ∼ 20–13 Ma ago, the late Neogene (12–5 Ma) volcanism of Sikhote-Alin and Sakhalin became distinct from those of the preceding stages and indicated within-plate geochemical features similar to those of Northeast China, in contrast to the Japan Arc which produces island arc volcanism. During the Japan Sea opening, the northeastern Eurasian margin detached and became a continental island arc system, and an integral part of continental eastern Asia comprising Sikhote-Alin, Sakhalin and Northeast China, and the Japan Arc with a back-arc basin. The convergence between the Eurasian Plate, the Pacific Plate and the Indian Plate may have contributed to the Cenozoic tectono-magmatism of the northeastern Eurasian continent.  相似文献   
7.
8.
Short-term earthquake prediction: Current status of seismo-electromagnetics   总被引:3,自引:0,他引:3  
Loss of human lives as a result of earthquakes is caused overwhelmingly by the collapse of buildings within less than a few minutes of main shocks. The most urgent countermeasure consists of two key elements. One is strengthening of weak structures and the other is short-term earthquake prediction. Short-term prediction needs precursors. Although some promising precursors are reported, the prevailing views in Japan and elsewhere are overly pessimistic. The pessimism largely roots in the fact that short-term precursors are generally non-seismic and tools developed for seismology are not designed to detect them. Nonetheless, nationally funded large-scale earthquake prediction programs always emphasize the need to reinforce seismometer networks. They do not take into account the views of those in the science community who point to the importance of non-seismic precursors. While there are well-founded causes to be skeptical, the situation needs to be improved. One reason for skepticism is that the observations of precursors have not yet been perfect enough and another is that some important fundamental aspects of non-seismic precursors are still unresolved. We review some of these problems.  相似文献   
9.
In 2014 and 2015, we examined the spatial distribution of cesium-134 (half-life: 2.06 years) from the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) in marine sediments within coastal–basin areas (water depths of 40–520 m) off central Honshu Island (the main island of Japan) in the Sea of Japan. The 134Cs concentrations in both the surface sediment (0–1 cm depth) and whole-core inventory exhibited wide variations, and were highest at the site closest to the Agano River Estuary area (6.7 Bq/kg-dry and 886 Bq/m2, respectively). This indicates that 134Cs in coastal areas was delivered by riverine suspended solids (SS). Given the spatial variation in 134Cs concentrations, we believe that 134Cs partially migrated northeastward within ~50 km along Honshu Island (at water depths shallower than ~140 m), and southwestward, including the Sado Basin area. This is predominantly attributable to the transport of SS by bottom currents and unsteady downward delivery onto the steep slopes of the basin. The total amount of 134Cs in the study area in 2014 was estimated at approximately 0.6 TBq (decay-corrected to March 11, 2011, date of FDNPP accident).  相似文献   
10.
Abstract The well-preserved 2.5 km diameter Roter Kamm impact crater is located in the Namib desert in Namibia. The impact has occurred in Precambrian granitic and granodioritic orthogneisses of the 1200–900 Ma old Namaqualand Metamorphic Complex which were partly covered by Gariep metasediments; the granites are invaded by quartz veins and quartz-feldspar-pegmatites. Previous geological field evidence suggested a crater age of about 5–10 Ma. In order to constrain this age, we selected a set of basement rocks (granites, granodiorites) exposed at the crater rim and studied the Rb-Sr, K-Ar, 40Ar-39Ar, and 10Be-26Al isotopic systems as well as apatite fission track ages of these samples. The Rb-Sr isotopic systematics confirm the derivation of these samples from the Namaqualand basement (age about 1.29 Ga), which underwent Damaran orogenesis at about 650 Ma. No basement rocks with Rb-Sr ages younger than about 410 Ma were identified. The K-Ar ages of pseudotachylite and melt breccia samples show that these samples are dominated by incompletely degassed fragments of basement rocks, with some retaining their original metamorphic ages of about 470 Ma. The apatite fission track ages range from 20–28 Ma, which may be interpreted as an extension of the 25 Ma Burdigalian peneplanation event, or as incomplete resetting of the apatite fission tracks during the impact event. The 10Be and 26Al exposure age of a quartz sample isolated from a quartz-pegmatite was found to be 150 ka; it is likely that the exposure of the sample began after material covering it had been removed by erosion 150 ka ago. Two glassy fractions extracted from a rim granite were dated by 40Ar-39Ar analysis. One sample gives practically a plateau age of 3.7 ± 0.3 Ma, while the other gives a minimum age of 3.6 Ma. The best available age estimate for the Roter Kamm crater is therefore 3.7 ± 0.3 Ma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号