首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   10篇
测绘学   3篇
大气科学   2篇
地球物理   32篇
地质学   23篇
海洋学   20篇
天文学   46篇
自然地理   1篇
  2023年   1篇
  2022年   5篇
  2021年   1篇
  2020年   5篇
  2019年   1篇
  2018年   7篇
  2017年   10篇
  2016年   6篇
  2015年   4篇
  2014年   6篇
  2013年   4篇
  2012年   4篇
  2011年   3篇
  2010年   10篇
  2009年   9篇
  2008年   15篇
  2007年   3篇
  2006年   6篇
  2005年   7篇
  2004年   7篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  1999年   2篇
  1996年   2篇
  1985年   1篇
  1940年   1篇
排序方式: 共有127条查询结果,搜索用时 15 毫秒
31.
Ophiolitic bodies in the Dinaro-Hellenic mountain belt are among the most important ones in the Peri-Mediterranean Alpine chains. The characteristic feature of this ophiolitic belt is its Middle to Late Jurassic age of obduction. The ophiolitic bodies form two major belts on each side of the Pelagonian zone: an east Pelagonian belt in the Vardarian domain and a Supra-Pelagonian ophiolitic belt (SPO) to the west. The different hypotheses relative to the origin of the SPO present geodynamic evolution models accounting for most of the available data: a mid-Triassic episode of rifting; a Ladinian–Jurassic episode of sea-floor spreading forming notably the Maliac Ocean; a Middle to Late Jurassic convergent period with subduction and obduction episodes, and finally, a late episode of Tertiary compressional deformation responsible for the westward thrusting of the Jurassic ophiolitic nappes over the external zones. Despite many studies dating from the early 1970s, the eastern or western Pelagonian origin of these ophiolites, especially the SPO, is still under dispute. Whatever the adopted hypothesis, we consider that the main SPO bodies (N-Pindos, Vourinos, Othris, Evia, Argolis) have the same origin because of their geographic continuity and of the similarities in their geological characteristics. We propose that this ocean corresponds everywhere to the Maliac Ocean, defined in Othris from the well-preserved sedimentary (oceanic margin) and ophiolitic nappes thrust during the Late Jurassic obduction onto the Pelagonian platform. There is strong evidence for the existence of two deep basins on both sides of the Pelagonian continental ridge during Triassic–Jurassic times. They correspond, respectively, to the Vardar area to the east and the Pindos domain to the west, one of these domains being at the origin of the SPO. The hypothesis of an eastward emplacement of the SPO from the Pindos domain is based mainly on sedimentological data from the margin series and on structural analyses of ophiolitic bodies. However, we conclude the westward obduction of the Maliac Ocean, originating from the Vardar area, to be the best fitting model. This westward model is supported by paleogeographic and structural constraints on regional scale. Notably, the absence of obducted ophiolites in the Jurassic series of the Koziakas units (units attributed to the western Pelagonian margin) and of the Parnassus domain (on the eastern side of the Pindos basin) is difficult to reconcile with an eastward obduction from the Pindos domain. Other observations, such as the distribution of ophiolitic detritus in the internal and external zones, also promote the westward Late Jurassic obduction of the Maliac Ocean. Our preferred model offers a consistent explanation for the mechanism and timing of the emplacement of the SPO, as well as providing insight on the origin and emplacement of the Vardarian ophiolites. Following this hypothesis, there is no need for a clear boundary between the SPO and the west Vardarian ophiolitic bodies as they were obducted from the same oceanic basin and during the same Jurassic tectonic event. In this paper, we develop evidence in favor of the eastern Pelagonian origin for the SPO (our adopted model) and provide discussion on the data supporting the main alternative hypothesis (western origin for the SPO).  相似文献   
32.
In Geropotamos River Basin, located on the north-central part of Crete, Greece, two main factors were believed to be affecting the geochemistry of the groundwater with high salt contents: seawater intrusion and/or Miocene evaporates. To identify the origin of the high salinity in groundwater, a hydrogeochemical and isotopic study was performed. Water samples from 22 wells and 2 springs were analyzed for physico-chemical parameters, major ions analysis, as well as stable isotopes (??18O, ??D). From the present survey, in which detailed hydrogeochemical investigation was conducted, the uncertainty of the contamination sources was decreased in the northern part of Geropotamos Basin. The results complement the scenario in which seawater and the widespread human activities are the principal sources of groundwater contamination. Moreover, the results of the stable isotopes analyses (??18O and ??D) support the same hypothesis and make seawater intrusion the most probable cause for the highest salinity waters. It is indicated that saline intrusion is likely to occur along fractures in a fault zone through otherwise low-permeability phyllite?Cquartzite bedrock, which demonstrates the critical role of fracture pathways in salination problems of coastal aquifers.  相似文献   
33.
34.
We investigate the inclusions hosted in peritectic garnet from metapelitic migmatites of the Kinzigite Formation (Ivrea Zone, NW Italy) to evaluate the starting composition of the anatectic melt and fluid regime during anatexis throughout the upper amphibolite facies, transition, and granulite facies zones. Inclusions have negative crystal shapes, sizes from 2 to 10 μm and are regularly distributed in the core of the garnet. Microstructural and micro‐Raman investigations indicate the presence of two types of inclusions: crystallized silicate melt inclusions (i.e., nanogranitoids, NI), and fluid inclusions (FI). Microstructural evidence suggests that FI and NI coexist in the same cluster and are primary (i.e., were trapped simultaneously during garnet growth). FI have similar compositions in the three zones and comprise variable proportions of CO2, CH4, and N2, commonly with siderite, pyrophyllite, and kaolinite, suggesting a COHN composition of the trapped fluid. The mineral assemblage in the NI contains K‐feldspar, plagioclase, quartz, biotite, muscovite, chlorite, graphite and, rarely, calcite. Polymorphs such as kumdykolite, cristobalite, tridymite, and less commonly kokchetavite, were also found. Rehomogenized NI from the different zones show that all the melts are leucogranitic but have slightly different compositions. In samples from the upper amphibolite facies, melts are less mafic (FeO + MgO = 2.0–3.4 wt%), contain 860–1700 ppm CO2 and reach the highest H2O contents (6.5–10 wt%). In the transition zone melts have intermediate H2O (4.8–8.5 wt%), CO2 (457–1534 ppm) and maficity (FeO + MgO = 2.3–3.9 wt%). In contrast, melts at granulite facies reach highest CaO, FeO + MgO (3.2–4.7 wt%), and CO2 (up to 2,400 ppm), with H2O contents comparable (5.4–8.3 wt%) to the other two zones. Our results represent the first clear evidence for carbonic fluid‐present melting in the Ivrea Zone. Anatexis of metapelites occurred through muscovite and biotite breakdown melting in the presence of a COH fluid, in a situation of fluid–melt immiscibility. The fluid is assumed to have been internally derived, produced initially by devolatilization of hydrous silicates in the graphitic protolith, then as a result of oxidation of carbon by consumption of Fe3+‐bearing biotite during melting. Variations in the compositions of the melts are interpreted to result from higher T of melting. The H2O contents of the melts throughout the three zones are higher than usually assumed for initial H2O contents of anatectic melts. The CO2 contents are highest at granulite facies, and show that carbon‐contents of crustal magmas are not negligible at high T. The activity of H2O of the fluid dissolved in granitic melts decreases with increasing metamorphic grade. Carbonic fluid‐present melting of the deep continental crust represents, together with hydrate‐breakdown melting reactions, an important process in the origin of crustal anatectic granitoids.  相似文献   
35.
On February 15, 2013, after the observation of a brilliant fireball and a spectacular airburst over the southern Ural region (Russia), thousands of stones fell and were rapidly recovered, bringing some extremely fresh material for scientific investigations. We undertook a multidisciplinary study of a dozen stones of the Chelyabinsk meteorite, including petrographic and microprobe investigations to unravel intrinsic characteristics of this meteorite. We also study the short and long‐lived cosmogenic radionuclides to characterize the initial meteoroid size and exposure age. Petrographic observations, as well as the mineral compositions obtained by electron microprobe analyses, allow us to confirm the classification of the Chelyabinsk meteorite as an LL5 chondrite. The fragments studied, a few of which are impact melt rocks, contain abundant shock melt veins and melt pockets. It is likely that the catastrophic explosion and fragmentation of the Chelyabinsk meteoroid into thousands of stones was in part determined by the initial state of the meteoroid. The radionuclide results obtained show a wide range of concentrations of 14C, 22Na, 26Al, 54Mn, 57Co, 58Co, and 60Co, which indicate that the pre‐atmospheric object had a radius >5 m, consistent with other size estimates based on the magnitude of the airburst caused by the atmospheric entry and breakup of the Chelyabinsk meteoroid. Considering the observed 26Al activities of the investigated samples, Monte Carlo simulations, and taking into account the 26Al half‐life (0.717 Myr), the cosmic‐ray exposure age of the Chelyabinsk meteorite is estimated to be 1.2 ± 0.2 Myr. In contrast to the other radionuclides, 14C showed a very large range only consistent with most samples having been exposed to anthropogenic sources of 14C, which we associate with radioactive contamination of the Chelyabinsk region by past nuclear accidents and waste disposal, which has also been confirmed by elevated levels of anthropogenic 137Cs and primordial 40K in some of the Chelyabinsk fragments.  相似文献   
36.
European Venus Explorer (EVE): an in-situ mission to Venus   总被引:1,自引:0,他引:1  
The European Venus Explorer (EVE) mission was proposed to the European Space Agency in 2007, as an M-class mission under the Cosmic Vision Programme. Although it has not been chosen in the 2007 selection round for programmatic reasons, the EVE mission may serve as a useful reference point for future missions, so it is described here. It consists of one balloon platform floating at an altitude of 50–60 km, one descent probe provided by Russia, and an orbiter with a polar orbit which will relay data from the balloon and descent probe, and perform science observations. The balloon type preferred for scientific goals is one which oscillates in altitude through the cloud deck. To achieve this flight profile, the balloon envelope contains a phase change fluid, which results in a flight profile which oscillates in height. The nominal balloon lifetime is 7 days—enough for one full circumnavigation of the planet. The descent probe’s fall through the atmosphere takes 60 min, followed by 30 min of operation on the surface. The key measurement objectives of EVE are: (1) in situ measurement from the balloon of noble gas abundances and stable isotope ratios, to study the record of the evolution of Venus; (2) in situ balloon-borne measurement of cloud particle and gas composition, and their spatial variation, to understand the complex cloud-level chemistry; (3) in situ measurements of environmental parameters and winds (from tracking of the balloon) for one rotation around the planet, to understand atmospheric dynamics and radiative balance in this crucial region. The portfolio of key measurements is complemented by the Russian descent probe, which enables the investigation of the deep atmosphere and surface.  相似文献   
37.
The 1.07?Myr old Bosumtwi impact structure (Ghana), excavated in 2.1-2.2?Gyr old supracrustal rocks of the Birimian Supergroup, was drilled in 2004. Here, we present single crystal U-Pb zircon ages from a suevite and two meta-graywacke samples recovered from the central uplift (drill core LB-08A), which yield an upper Concordia intercept age of ca. 2145?±?82?Ma, in very good agreement with previous geochronological data for the West African Craton rocks in Ghana. Whole rock Rb-Sr and Sm-Nd isotope data of six suevites (five from inside the crater and one from outside the northern crater rim), three meta-graywacke, and two phyllite samples from core LB-08A are also presented, providing further insights into the timing of the metamorphism and a possibly related isotopic redistribution of the Bosumtwi crater rocks. Our Rb-Sr and Sm-Nd data show also that the suevites are mixtures of meta-greywacke and phyllite (and possibly a very low amount of granite). A comparison of our new isotopic data with literature data for the Ivory Coast tektites allows to better constrain the parent material of the Ivory Coast tektites (i.e., distal impactites), which is thought to consist of a mixture of metasedimentary rocks (and possibly granite), but with a higher proportion of phyllite (and shale) than the suevites (i.e., proximal impactites). When plotted in a Rb/Sr isochron diagram, the sample data points (n?=?29, including literature data) scatter along a regression line, whose slope corresponds to an age of 1846?±?160?Ma, with an initial Sr isotope ratio of 0.703?±?0.002. However, due to the extensive alteration of some of the investigated samples and the lithological diversity of the source material, this age, which is in close agreement with a possible "metamorphic age" of ~?1.8-1.9?Ga tentatively derived from our U-Pb dating of zircons, is difficult to consider as a reliable metamorphic age. It may perhaps reflect a common ancient source whose Rb-Sr isotope systematics has not basically been reset on the whole rock scale during the Bosumtwi impact event, or even reflect another unknown geologic event.  相似文献   
38.
The results of the updated and quality-checked data base of field observations on chlorophyll a (Chl a) collected in the period 1970–2007 in the Northern Adriatic Sea are presented. From the last decade, SeaWiFS satellite information was also considered. Results demonstrate a global tendency towards Chl a reduction in the period of investigation, which is more marked in the eutrophic area under the influence of the Po River. In the rest of the basin, which presents meso- or oligotrophic characteristics, long-term changes are more difficult to detect. The long-term field dataset can be divided into two periods: the last decade characterized by the strong decrease observed in the whole northern Adriatic and the earlier period with no or slight increase. The recent substantial reduction of Chl a concentrations is confirmed all over the basin (−0.11 mg m−3 year−1) from satellite-derived information. Results are consistent with recently evidenced decrease in concentrations of phosphate and ammonia and point to the existence of oligotrophication in the Northern Adriatic. Results indicate forcefully that the still common perception of the Adriatic Sea as a very eutrophic basin is no longer appropriate, at least for its northern part and in recent years.  相似文献   
39.
ABSTRACT

We explore how to address the challenges of adaptation of water resources systems under changing conditions by supporting flexible, resilient and low-regret solutions, coupled with on-going monitoring and evaluation. This will require improved understanding of the linkages between biophysical and social aspects in order to better anticipate the possible future co-evolution of water systems and society. We also present a call to enhance the dialogue and foster the actions of governments, the international scientific community, research funding agencies and additional stakeholders in order to develop effective solutions to support water resources systems adaptation. Finally, we call the scientific community to a renewed and unified effort to deliver an innovative message to stakeholders. Water science is essential to resolve the water crisis, but the effectiveness of solutions depends, inter alia, on the capability of scientists to deliver a new, coherent and technical vision for the future development of water systems.
EDITOR D. Koutsoyiannis; ASSOCIATE EDITOR not assigned  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号