首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   3篇
测绘学   3篇
大气科学   2篇
地球物理   20篇
地质学   9篇
海洋学   15篇
自然地理   1篇
  2022年   1篇
  2020年   1篇
  2019年   2篇
  2017年   2篇
  2016年   4篇
  2014年   2篇
  2013年   6篇
  2012年   2篇
  2011年   3篇
  2010年   6篇
  2009年   5篇
  2008年   3篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  1995年   1篇
  1994年   1篇
  1990年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有50条查询结果,搜索用时 31 毫秒
21.
The rates and styles of channel adjustments following an abrupt and voluminous sediment pulse are investigated in the context of site and valley characteristics and time‐varying sediment transport regimes. Approximately 10.5 x 106 m3 of stored gravel and sand was exposed when Barlin Dam failed during Typhoon WeiPa in 2007. The dam was located on the Dahan River, Taiwan, a system characterized by steep river gradients, typhoon‐ and monsoon‐driven hydrology, high, episodic sediment supply, and highly variable hydraulic conditions. Topography, bulk sediment samples, aerial photos, and simulated hydraulic conditions are analyzed to investigate temporal and spatial patterns in morphology and likely sediment transport regimes. Results document the rapid response of the reservoir and downstream channel, which occurred primarily through incision and adjustment of channel gradient. Hydraulic simulations illustrate how the dominant sediment transport regime likely varies between study periods with sediment yield and caliber and with the frequency and duration of high flows. Collectively, results indicate that information on variability in sediment transport regime, valley configuration, and distance from the dam is needed to explain the rate and pattern of morphological changes across study periods. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
22.
A series of experiments were conducted in a super-wave flume (300 m×5 m×5.2 m) to examine the low-frequency motion induced by waves with different incident steepness, sloping gradients and normalized frequency (sideband space). Two kinds of waves including initial uniform wave train and modulated wave train (one carrier with a pair of sidebands) are utilized for incident wave conditions. From the experimental results, it is found that for a given slope gradient the infra-gravity wave component decreases as wave nonlinearity increases and frequency downshift is a predominant factor. Furthermore, the magnitude of low-frequency component decreases with slope gradients for a given initial wave condition. In addition, the maximum value of low-frequency motion is found to be close to the normalized frequency, δ=1.0.  相似文献   
23.
Local flow properties and regional weather or climate are strongly affected by land‐atmosphere interactions of momentum and scalars within the daytime convective boundary layer (CBL). In this study, we investigate the impact of green space scale on the daytime atmospheric boundary layer (ABL) over a synthetic urban domain using a recently developed large‐eddy simulation‐land surface model (LES–LSM) framework. With the use of realistic soundings as initial conditions, a series of numerical experiments over synthetic urban surfaces with varied scale of vegetated area is performed. Simulated micrometeorological properties, surface fluxes, basic CBL characteristics, and cloud distribution are analysed. The results show reference‐level air potential temperature and specific humidity as well as surface fluxes over green space are significantly affected by the scale of green space in the urban domain. The surface organization due to vegetated area scale also has impacts on horizontally averaged scalar and momentum profiles; however, the magnitude in this study is smaller than the results of a previous study using a set of offline surface fluxes as the lower boundary condition for LES. In addition, even though this study only performs a daytime diurnal cycle, the impact of green space scale on cloud distribution in simulations is significant. The cases with more organized green space yield lower‐elevated cumulus cloud and larger‐cloud cover fraction, which impacts the energy budget at the top of boundary layer and, in turn, could lead to additional surface cooling with respect to longer‐term weather and climate. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
24.
A new prototype system for earthquake early warning in Taiwan   总被引:1,自引:0,他引:1  
A new prototype earthquake early warning (EEW) system is being developed and tested using a real-time seismographic network currently in operation in Taiwan. This system is based on the Earthworm environment which carries out integrated analysis of real-time broadband, strong-motion and short-period signals. The peak amplitude of displacement in the three seconds after the P arrival, dubbed Pd, is used for the magnitude determination. Incoming signals are processed in real time. When a large earthquake occurs, P-wave arrival times and Pd will be estimated for location and magnitude determinations for EEW purpose. In a test of 54 felt earthquakes, this system can report earthquake information in 18.8±4.1 s after the earthquake occurrence with an average difference in epicenter locations of 6.3±5.7 km, and an average difference in depths of 7.9±6.6 km from catalogues. The magnitudes approach a 1:1 relationship to the reported magnitudes with a standard deviation of 0.51. Therefore, this system can provide early warning before the arrival of S-wave for metropolitan areas located 70 km away from the epicenter. This new system is still under development and being improved, with the hope of replacing the current operational EEW system in the future.  相似文献   
25.
In order to improve the locating capability for offshore earthquakes and tsunamis monitored off northeastern Taiwan, a cable-based ocean bottom seismographic observatory named “Marine Cable Hosted Observatory” (MACHO) was constructed and began operation at the end of 2011. The installed instruments of the observatory include a broadband seismometer, a strong-motion seismometer and a pressure gauge. In addition, various scientific instruments could be deployed for other purposes as well. At present, the seismic data are transmitted in real-time via a fiber cable, and integrated into the current inland seismographic network in Taiwan. The ocean bottom station has contributed to provide high quality seismic data already. According to observations from January 2012 to June 2013, there were a total of 15,168 earthquakes recorded by the system. By using the data from the ocean bottom station, the number of relocated earthquakes with an azimuth gap less than 180 degrees substantially increase about 34 %. Meanwhile, the root–mean–square of the time residual, the error in epicenter, and the error in depth of the earthquake locations decrease. Therefore, the implementation of MACHO has the advantage of extending the coverage of existing the Taiwan seismic network to the offshore, providing more accurate and real-time seismic data for offshore earthquakes monitoring. The results show that MACHO is crucial and necessary for monitoring seismic activities in northeastern Taiwan.  相似文献   
26.
In this study, the effect of sludge retention time on ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) in an anaerobic/oxic (AO) process, was explored. The results indicated that the growth rate constants of AOB were 0.97, 0.88, and 0.79 d–1, respectively, meanwhile, those of NOB were 1.22, 1.03, and 0.93 d–1, respectively, when the sludge retention time (SRT) was 15 days, 10 days and 5 days. The relation between the growth rate constant and the SRT could be best described using a simple exponential curve and a second type hyperbolic curve. The lysis rate constants for AOB and NOB were 0.13 and 0.18 d–1, respectively. The yield coefficients values of AOB and NOB were 0.22 and 0.21, respectively. The percentage of AOB to mixed liquid suspended solids (MLSS) was 0.64%, 0.53%, and 0.35%, respectively. Meanwhile, the percentage of NOB was 2.24%, 1.87%, and 1.11%, respectively, at SRT values of 15 days, 10 days and 5 days. When the SRT value decreased, the AOB and NOB biomass levels decreased by 12.75 and 47.01 mg L–1, respectively. Meanwhile the removal efficiency of NH4+‐N decreased from 90 to 26%, while the removal efficiency of total nitrogen (TN) decreased from 14 to 8%.  相似文献   
27.
Wu  Shiang-Jen  Hsiao  Yi-Hua  Yeh  Keh-Chia  Yang  Sheng-Hsueh 《Natural Hazards》2017,87(1):469-513
Natural Hazards - This study aims to develop a probabilistic rainfall threshold estimation model for shallow landslides (PRTE_LS) in order to quantify its reliability while being affected by...  相似文献   
28.
A new orthometric correction (OC) formula is presented and tested with various mean gravity reduction methods using leveling, gravity, elevation, and density data. For mean gravity computations, the Helmert method, a modified Helmert method with variable density and gravity anomaly gradient, and a modified Mader method were used. An improved method of terrain correction computation based on Gaussian quadrature is used in the modified Mader method. These methods produce different results and yield OCs that are greater than 10 cm between adjacent benchmarks (separated by 2 km) at elevations over 3000 m. Applying OC reduces misclosures at closed leveling circuits and improves the results of leveling network adjustments. Variable density yields variation of OC at millimeter level everywhere, while gravity anomaly gradient introduces variation of OC of greater than 10 cm at higher elevations, suggesting that these quantities must be considered in OC. The modified Mader method is recommended for computing OC.Acknowledgments.This study is supported by the Ministry of the Interior (MOI), Taiwan, under the project `Measuring gravity on first-order benchmarks'. The authors are grateful to F.S. Ning and his colleagues at BSB (Base Survey Battalion) for their precision work in collecting gravity data, and to R. Forsberg for the terrain correction program. They also thank the Institute of Agricultural and Forestry Aerial Survey for elevation data and MOI for leveling data. Dr. Will Featherstone and three anonymous reviewers are thanked for their constructive comments.  相似文献   
29.
Since local scour at bridge piers in rivers and estuaries is a major cause of bridge failure, estimation of the maximum local scour depth is of great importance to hydraulic and coastal engineers. Although numerous studies that focus on scour-depth prediction have been done and published, understanding of the flow and turbulence characteristics of the horseshoe vortex that drives the scour mechanism in a developing scour hole still is immature. This study aims to quantify the detailed turbulent flow field in a developing clear-water scour hole at a circular pier using Particle Image Velocimetry (PIV). The distributions of velocity fields, turbulence intensities, and Reynolds shear stresses of the horseshoe vortex that form in front of the pier at different scour stages (t=0, 0.5, 1, 12, 24, and 48 h) are presented in this paper. During scour development, the horseshoe vortex system was found to evolve from one initially small vortex to three vortices. The strength and size of the main vortex are found to increase with increasing scour depth. The regions of both the maximum turbulence intensity and Reynolds shear stress are found to form at a location upstream of the main vortex, where the large turbulent eddies have the highest possibility of occurrence. Results from this study not only provide new insight into the complex flow-sediment interaction at bridge piers, but also provide valuable experimental databases for advanced numerical simulations.  相似文献   
30.
We constructed an apparent geological model with resistivity data from surface resistivity surveys. We developed a data fusion approach by integrating dense electrical resistivity measurements collected with Schlumberger arrays and wellbore logs. This approach includes an optimization algorithm and a geostatistic interpolation method. We first generated an apparent formation factor model from the surface resistivity measurements and groundwater resistivity records with an inverse distance method. We then converted the model into a geology model with the optimized judgment criteria from the algorithms relating the apparent formation factors to the borehole geology. We also employed a non-parametric bootstrap method to analyze the uncertainty of the predicted sediment types, and the predictive uncertainties of clay, gravel, and sand were less than 5%. Overall, our model is capable of capturing the spatial features of the sediment types. More importantly, this approach can be arranged in a self-updated sequence to enable adjustments to the model to accommodate newly collected core records or geophysical data. This approach yields a more detailed apparent geological model for use in future groundwater simulations, which is of benefit to multi-discipline studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号