首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   158篇
  免费   5篇
  国内免费   2篇
测绘学   1篇
大气科学   1篇
地球物理   63篇
地质学   68篇
海洋学   23篇
天文学   6篇
自然地理   3篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   3篇
  2018年   5篇
  2017年   6篇
  2016年   11篇
  2015年   1篇
  2014年   7篇
  2013年   6篇
  2012年   6篇
  2011年   10篇
  2010年   4篇
  2009年   8篇
  2008年   17篇
  2007年   9篇
  2006年   6篇
  2005年   5篇
  2004年   8篇
  2003年   8篇
  2002年   2篇
  2001年   7篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1975年   1篇
排序方式: 共有165条查询结果,搜索用时 31 毫秒
41.
We found fine-grained Fe-rich orthopyroxene-rich xenoliths (mainly orthopyroxenite) containing partially digested dunite fragments of Group I from Takashima, Southwest Japan. Orthopyroxenite veinlets, some of which contain plagioclase at the center, also replace olivine in dunite and wehrlite xenoliths of Group I. This shows high reactivity with respect to olivine of the melt involved in orthopyroxenite formation, indicating its high SiO2 activity. The secondary orthopyroxene of this type is characterized by low Mg# [= Mg/(Mg + total Fe) atomic ratio] (down to 0.73) and high Al2O3 contents (5–6 wt%). It is different in chemistry from other secondary orthopyroxenes found in peridotite xenoliths derived from the mantle wedge. Clinopyroxenes in the Fe-rich orthopyroxenite show a convex-upward REE pattern with a crest around Sm. This pattern is strikingly similar to that of clinopyroxenes of Group II pyroxenite xenoliths and of phenocrystal and xenocrystal clinopyroxenes, indicating involvement of similar alkali basaltic melts. The Fe-rich orthopyroxenite xenoliths from Takashima formed by reaction between evolved alkali basalt melt and mantle olivine; alkali basalt initially slightly undersaturated in silica might have evolved to silica-oversaturated compositions by fractional crystallization at high-pressure conditions. The Fe-rich orthopyroxenites occur as dikes within the uppermost mantle composed of dunite and wehrlite overlying pockets of Group II pyroxenites. The orthopyroxene-rich pyroxenites of this type are possibly common in the uppermost mantle beneath continental rift zones where alkali basalt magmas have been prevalent.  相似文献   
42.
43.
Polymineralic inclusions which consist of a few grains of diopside, enstatite, jadeite, nepheline, albite, pargasite, phlogopites and olivine were found in chromian spinel in a chromitite pod and in troctolite from Hess Deep, equatorial Pacific. The inclusion mineral suite in chromitite is characterized by Na-Al silicates, such as jadeite, nepheline and albite. Jadeite and nepheline commonly coexist with enstatite, and tend to occur as interstitial grains between subhedral enstatite (or other minerals) and host spinel. Albite, diopside and enstatite occur as equant inclusions. The mafic minerals in the inclusions have similar chemistry to those found in the troctolite and dunite. The modes of occurrence and mineral chemistry of the inclusions are controlled by magmatic precipitation, and subsequent reequilibration due to decrease of temperature in the uppermost mantle. The mafic minerals in spinel inclusions were crystallized from a melt enriched in Cr and some incompatible components formed by melt-mantle interaction process mixed to various extent with subsequently supplied more primary melt. Albite and nepheline could also be formed at the magmatic stage. Jadeite was formed by a subsolidus reaction of albite and nepheline at low temperatures (250–300 °C) at slightly less than 3 kbar. This requires a remarkable temperature decrease, at least locally, of the uppermost mantle and crust. The Hess Deep rocks were formed in the uppermost mantle beneath a spreading-ridge axis at more than 1000 °C, and were transposed outwards from the axis by corner flow. At the off-ridge conditions, the rocks were cooled and serpentinized by circulation of sea water at the mantle depth to form jadeite in chromitite. The serpentinized portion could have risen as a kind of serpentinite diapir through the thin crust up to the ocean floor. Received: 24 January 1997 / Accepted: 6 November 1997  相似文献   
44.
The difference in pressure condition of progressive metamorphism established by Schreinemakers' analysis of mineral assemblages in metabasalts makes it possible for the low grade metamorphism of the Izu-Tanzawa-Fujigawadani collision zone to be divided into three types. Type I is characterized by prehnite + epidote + hematite, suggesting the lowest pressure type; whereas type II is defined by prehnite + epidote + actinolite—the intermediate pressure type, and finally the distinctive assemblage of type III is pumpellyite + epidote + actinolite—the higher pressure type. The pressure conditions estimated are about 1 kbar for type I, 1–2 kbar for type II and 2–3 kbar for type III. The metamorphic rocks of type III occur in the southwestern part of the Tanzawa Mountains, and the metamorphic rocks of type I occur in the central Izu Peninsula and the northeast Tanzawa Mountains. Therefore, the upward displacement of the accretion mass due to collision deformation is most significant at the southwest Tanzawa Mountains. This suggests that the accretion of the Tanzawa and Izu blocks is accompanied with large-scale tilting of the mass.  相似文献   
45.
A. Yamaji  T. Sakai  K. Arai  Y. Okamura 《Tectonophysics》2003,369(1-2):103-120
Transpressional tectonics characterizes the SW Japan arc. However, we will show in this article that offshore seismic profiles and onshore mesoscale faults indicate that the eastern part of the forearc was subject to transtensional tectonics since ca. 2.0 Ma. Offshore normal faults imaged on the profiles run parallel to the Nankai Trough, and started activity at 1.0 Ma, but transtensional tectonics commenced the onshore area earlier. In order to understand the stress history in the forearc region, we collected fault-slip data from onshore mesoscale faults in Plio-Pleistocene sedimentary rocks in the Kakegawa area at the northeastern extension of the offshore normal faults. Most of the mesoscale faults are oblique-normal, indicating that the area was subject to transtensional tectonics. The faults suggest that the compressional tectonic regime was followed by the transtensional one at 2.0 Ma, in agreement with regional tectonostratigraphic data, which indicate that folding ceased at that time. Present compressional stress followed the transtensional tectonic regime sometime in the late Pleistocene. Transtensional or extensional tectonic zone shifted from the Kakegawa area to the offshore region.These observations indicate that the state of stress just behind the accretionary prism of the eastern Nankai subduction zone has been unstable in the last 2 million years, suggesting that the forearc wedge has been at critical state in that gravitational force and basal shear traction on the wedge have been balanced, but the forearc tectonics has been susceptible to small perturbations. Possible factors compatible with the observed stress history include the change of subduction direction of the plate at 1.0 Ma, and the rapid uplift of Central Japan thereafter.  相似文献   
46.
We examined aluminous mafic rock (with or without corundum or sapphirine) alternating with peridotite from the Ronda peridotite massif, southern Spain. On the basis of petrographic characteristics, these mafic rocks show a decompression history from high pressure (P > 1.5 GPa), but on the basis of their geochemical characteristics, they are crystal accumulates of plagioclase, clinopyroxene, and olivine formed within the lower crust (P < 1 GPa). A complex evolution history, including higher-pressure recrystallization after initial formation as cumulate gabbros at lower-pressure conditions, is proposed. The aluminous mafic rocks and their peridotite hosts are inferred to be recycled crustal materials now observed as centimeter-scale layered components in alpine-type peridotite. The rocks retained their original cumulate compositions; that is, their compositions were not affected by melting and metasomatic modifications during subduction, intense deformation within the upper mantle, and upwelling to the surface.  相似文献   
47.
Mantle peridotites from the Western Pacific   总被引:1,自引:0,他引:1  
We review petrographical and petrological characteristics of mantle peridotite xenoliths from the Western Pacific to construct a petrologic model of the lithospheric mantle beneath the convergent plate boundary. The peridotite varies from highly depleted spinel harzburgite of low-pressure origin at the volcanic front of active arcs (Avacha of Kamchatka arc and Iraya of Luzon–Taiwan arc) to fertile spinel lherzolite of high-pressure origin at the Eurasian continental margin (from Sikhote-Alin through Korea to eastern China) through intermediate lherzolite–harzburgite at backarc side of Japan island arcs. Oxygen fugacity recorded by the peridotite xenoliths decreases from the frontal side of arc to the continental margin. The sub-arc type peridotite is expected to exist beneath the continental margin if accretion of island arc is one of the important processes for continental growth. Its absence suggests replacement by the continental lherzolite at the region of backarc to continental margin. Asthenospheric upwelling beneath the continental region, which has frequently occurred at the Western Pacific, has replaced depleted sub-cratonic peridotite with the fertile spinel lherzolite. Some of these mantle diapirs had opened backarc basins and strongly modified the lithospheric upper mantle by metasomatism and formation of Group II pyroxenites.  相似文献   
48.
Macro- and molecular-scale knowledge of uranyl (U(VI)) partitioning reactions with soil/sediment mineral components is important in predicting U(VI) transport processes in the vadose zone and aquifers. In this study, U(VI) reactivity and surface speciation on a poorly crystalline aluminosilicate mineral, synthetic imogolite, were investigated using batch adsorption experiments, X-ray absorption spectroscopy (XAS), and surface complexation modeling. U(VI) uptake on imogolite surfaces was greatest at pH ∼7-8 (I = 0.1 M NaNO3 solution, suspension density = 0.4 g/L [U(VI)]i = 0.01-30 μM, equilibration with air). Uranyl uptake decreased with increasing sodium nitrate concentration in the range from 0.02 to 0.5 M. XAS analyses show that two U(VI) inner-sphere (bidentate mononuclear coordination on outer-wall aluminol groups) and one outer-sphere surface species are present on the imogolite surface, and the distribution of the surface species is pH dependent. At pH 8.8, bis-carbonato inner-sphere and tris-carbonato outer-sphere surface species are present. At pH 7, bis- and non-carbonato inner-sphere surface species co-exist, and the fraction of bis-carbonato species increases slightly with increasing I (0.1-0.5 M). At pH 5.3, U(VI) non-carbonato bidentate mononuclear surface species predominate (69%). A triple layer surface complexation model was developed with surface species that are consistent with the XAS analyses and macroscopic adsorption data. The proton stoichiometry of surface reactions was determined from both the pH dependence of U(VI) adsorption data in pH regions of surface species predominance and from bond-valence calculations. The bis-carbonato species required a distribution of surface charge between the surface and β charge planes in order to be consistent with both the spectroscopic and macroscopic adsorption data. This research indicates that U(VI)-carbonato ternary species on poorly crystalline aluminosilicate mineral surfaces may be important in controlling U(VI) mobility in low-temperature geochemical environments over a wide pH range (∼5-9), even at the partial pressure of carbon dioxide of ambient air (pCO2 = 10−3.45 atm).  相似文献   
49.
Abstract Peridotite xenoliths from the subarc mantle, which have been rarely documented, are described from Iraya volcano of the Luzon arc, the Philippines, and are discussed in the context of wedge-mantle processes. They are mainly harzburgite, with subordinate dunite, and show various textures from weakly porphyroclastic (C-type) to extremely fine-grained equigranular (F-type). Textural characteristics indicate a transition from the former to the latter by recrystallization. The F-type peridotite has inclusion-rich fine-grained olivine and radially aggregated orthopyroxene, being quite different in texture from ordinary mantle-derived peridotites previously documented. Despite their strong textural contrast, the two types do not show any systematic difference in modal composition. The harzburgite of C-type has ordinary mantle peridotite mineralogy; olivine is mostly Fo91–92 and chromian spinel mostly has Cr#s (= Cr/[Cr + Al] atomic ratios) from 0.3 to 0.6. Olivine is slightly more Fe-rich (Fo89–91) and spinel is more enriched in Cr (the Cr#, 0.4–0.8) and Fe3+ in F-type peridotites than in C-type harzburgite. Orthopyroxene in F-type peridotites is relatively low in CaO (<1 wt%), Al2O3 (<2 wt%) and Cr2O3 (<0.4 wt%). The F-type peridotite was possibly formed from the C-type one by recrystallization including local dissolution and precipitation of orthopyroxene assisted by fluid (or melt) of subduction origin. Textural characteristics, however, indicate a deserpentinization origin from abyssal serpentinite of which protolith was a C-type peridotite. In this scenario the initial abyssal serpentinite was possibly dehydrated due to an initiation of magmatic activity beneath an incipient oceanic arc like Batan Island. The F-type peridotite is characteristic of the upper mantle of island arc, especially of incipient arc.  相似文献   
50.
We investigated the geographical variations in abundance and biomass of the major taxonomic groups of micro- and net-zooplankton along a transect through Ise Bay, central Japan, and neighboring Pacific Ocean in February 1995. The results were used to estimate their secondary and tertiary production rates and assess their trophic roles in this eutrophic embayment in winter. Ise Bay nourished a much higher biomass of both micro- and net-zooplankton (mean: 3.79 and 13.9 mg C m–3, respectively) than the offshore area (mean: 0.76 and 4.47 mg C m–3, respectively). In the bay, tintinnid ciliates, naked ciliates and copepod nauplii accounted for, on average, 69, 18 and 13% of the microzooplankton biomass, respectively. Of net-zooplankton biomass, copepods (i.e. Acartia, Calanus, Centropages, Microsetella and Paracalanus) formed the majority (mean: 63%). Average secondary production rates of micro- and net-zooplankton in the bay were 1.19 and 1.87 mg C m–3d–1 (or 23.1 and 36.4 mg C m–2d–1), respectively, and average tertiary production rate of net-zooplankton was 0.75 mg C m–3d–1 (or 14.6 mg C m–2d–1). Available data approximated average phytoplankton primary production rate as 1000 mg C m–2d–1 during our study period. The transfer efficiency from primary production to zooplankton secondary production was 6.0%, and the efficiency from secondary production to tertiary production was 25%. The amount of food required to support the zooplankton secondary production corresponded to 18% of the phytoplankton primary production or only 1.7% of the phytoplankton biomass, demonstrating that the grazing impact of herbivorous zooplankton was minor in Ise Bay in winter.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号