首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   229篇
  免费   6篇
  国内免费   4篇
测绘学   7篇
大气科学   36篇
地球物理   73篇
地质学   67篇
海洋学   30篇
天文学   13篇
综合类   2篇
自然地理   11篇
  2022年   1篇
  2020年   5篇
  2019年   3篇
  2018年   9篇
  2017年   6篇
  2016年   9篇
  2015年   18篇
  2014年   13篇
  2013年   14篇
  2012年   16篇
  2011年   18篇
  2010年   15篇
  2009年   19篇
  2008年   17篇
  2007年   18篇
  2006年   10篇
  2005年   10篇
  2004年   5篇
  2003年   8篇
  2002年   1篇
  2001年   4篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   3篇
  1995年   2篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1987年   3篇
  1986年   1篇
  1984年   1篇
排序方式: 共有239条查询结果,搜索用时 33 毫秒
91.
Natural Hazards - This article analyzes the impact of socio-natural disasters on social capital at a local level, studying the cases of the communities of Chañaral and Diego de Almagro after...  相似文献   
92.
The intensive mussel culture carried out in the past 40 years in the Rias of Vigo and Arousa (Galicia-NW Spain) has led to substantial changes in the ecology and geochemistry of the seabed in these areas. Organic C enrichment of the seabed has generated strongly reducing conditions that directly affect the geochemistry of Fe and S. In the present study a total of six sediment cores were collected from the seabed under mussel rafts, and two different layers were distinguished: the biodeposit generated by the mussels, and the sediment situated immediately below this. Samples of each were analyzed to determine the pH, redox potential, sulphate and chloride in the interstitial water, as well as total percentage of organic C (TOC), N and S. Sequential extraction of the samples differentiated six fractions of Fe: exchangeable, carbonate, ferrihydrite, lepidocrocite, goethite and pyrite. The contents of total Fe, Fe associated with silicates, Fe soluble in 1 M HCl and AVS-Fe were also determined. In general, both the biodeposit and the sediment were anoxic (Eh < 100 mV) and there were no significant differences between the two in the total Fe or in the Fe associated with silicates, which appears to indicate that the input of Fe to the system did not vary greatly. However, there were significant differences between the sediment and the biodeposit in terms of the forms of Fe in each layer. The concentrations of pyrite in the biodeposit (0.37 ± 0.25 μmol g−1) were high but significantly lower than in the sediment (1.10 ± 0.20 μmol g−1), and there remained large quantities of reactive-Fe that were susceptible to pyritisation. In contrast, in the sediment, the reactive-Fe was intensively pyritised, and judging from the ratio of TOC–DOP, it limited synthesis of pyrite. Furthermore, a plot of the concentration of pyrite-S against TOC revealed an excess of ∼15% of pyrite-S, which is explained by the partial decoupling of pyrite formation from organic matter accumulation, caused by the formation of pyrite from the H2S generated by the anaerobic oxidation of methane. The latter process also appears to favour, although to a lesser extent, the precipitation of Ca carbonate, with incorporation of Fe.  相似文献   
93.
Humic substances (HS) from salt marsh soils were characterized and the relationships among HS composition and some geochemical factors were analysed. For this, three salt marshes with the same vegetation cover (Juncus maritimus), but with different geochemical characteristics, were selected. The qualitative characterization of the soil humic acids and fulvic acids was carried out by elemental analysis, FTIR spectroscopy, fluorescence spectroscopy and VACP/MAS 13C NMR spectroscopy.HS from salt marsh soils under sea rush (Juncus maritimus) displayed some shared characteristics such as low degree of humification, low aromatic content and high proportion of labile compounds, mainly polysaccharides and proteins. However, although the three salt marsh soils under study were covered by the same type of vegetation, the HS showed some important differences. HS composition was found to be determined not only by the nature of the original organic material, but also by environmental factors such as soil texture, redox conditions and tidal influence. In general, an increase in the humification process appeared to be related to aerobic conditions and predominance of sand in the mineral fraction of the soil, while the preservation of labile organic compounds may be associated with low redox potential values and fine soil texture.  相似文献   
94.
95.
96.
97.
We report an analysis of the mechanisms responsible for interannual variability in the Greenland–Iceland–Norwegian (GIN) Seas in a control integration of the HadCM3 coupled climate model. Interannual variability in sea surface temperature (SST) and sea surface salinity (SSS) is dominated by a quasi-periodic ∼7-year signal. Analyses show that the mechanism involves a competition between convection and advection. Advection carries cold, fresh, Arctic water over warm, salty, Atlantic water, while convection periodically mixes these two water masses vertically, raising SST. Convection is able to raise SST because of the presence of a subsurface temperature maximum. The GIN Seas convection in HadCM3 is forced by wind stress anomalies related to the North Atlantic Oscillation (NAO). The consequent SST anomalies feedback positively to force the atmosphere, resulting in a weak spectral peak (at ∼7 years) in GIN Seas sea level pressure. Although there is no evidence of a similar oscillation in reality, key aspects of the simulated mechanism may be relevant to understanding variability in the real GIN Seas. In particular, the potential for increases in convection to raise SST offers a possible new explanation for increases in SST that occurred between the 1960s and the late 1980s/early 1990s. These SST increases may have contributed to the observed sea-ice retreat. In addition, a positive feedback between GIN Seas SST and the atmosphere could contribute to the persistence of the NAO, potentially helping to explain its red spectrum or recent northeastward shift.
Sonia R. Gamiz-FortisEmail:
  相似文献   
98.
In the Beni Issef Massif, nearly 30 km west of Chefchaouen (Morocco), the thickest post-nappe succession within the Rifian sector of the Maghrebian Chain seals the tectonic contact between the Intrarifian External Tanger and Loukkos Units, related to the Rifian External Domain. This succession is very important for the reconstruction of the deformation timing of the Rifian Maghrebids. The age of its base, in fact, is an important constraint for defining an upper boundary to the stacking of both the Intrarifian and Maghrebian Flysch Basin Units, because clasts fed by the Melloussa and Numidian Flysch Nappes are abundant in the conglomerate layers. Field and biostratigraphic analyses pointed out the presence of a Lower Beni Issef Fm, unconformable on the Intrarifian External Tanger and Loukkos Units, and an Upper Beni Issef Fm, unconformable on both the Intrarifian Units and the Lower Beni Issef Fm. The Lower Beni Issef Fm, 150 m thick, consists of lenticular conglomerates with huge blocks in a marly-clayey matrix, followed by marls and minor sandstones. It deposited in a siliciclastic platform, shows a fining upward trend and is affected by metre- to hectometre-sized, locally reversed, folds. Samples collected 45–50 m above the base of the formation resulted not older than Late Tortonian in age, but an older age for the base of the formation cannot be excluded. The Upper Beni Issef Fm, up to 550 m thick, starts with coarse conglomerates followed by medium- to coarse-grained well-bedded sandstones and by grey-blue marls and mudrocks. It indicates deposition in a channelized marine delta, with evolution towards pro-delta pelites, and shows sub-horizontal or gently dipping beds towards the east. Biostratigraphic data indicate a probable Messinian age for this formation. The composition of the arenites of both Lower Beni Issef and Upper Beni Issef Fms is quartzolithic and all samples show a notable content of monocrystalline well-rounded quartz and sedimentary lithic fragments. Detrital modes, all falling in the Quartzose Recycled and Transitional Recycled fields, suggest a provenance from recycling of sedimentary successions, easily recognizable in the Flysch Basin and External Units, mainly the Numidian Nappe sandstones. A Tortonian age of the Lower Beni Issef Fm would agree with the Late Serravallian age of the uppermost beds of the External Tanger Unit and indicate that the most probable age for the stacking of the Intrarifian Units falls in the Late Serravallian-Middle Tortonian time span. The Lower Beni Issef Fm was involved in a compressive tectonic phase testified by north-south striking folds. Later, probably during Messinian, the Upper Beni Issef Fm deposited in a younger intramontane basin, resting on both the Intrarifian Units and the Lower Beni Issef Fm. Successively, the Upper Beni Issef Fm was passively transported piggyback on top of the fold and thrust belt during later tectonic evolution of the Rifian Maghrebids. This tectonic evolution results quite similar to that recognized in the Tellian and Sicilian Maghrebids and also in the southern Apennines.  相似文献   
99.
Soil physical characteristics can influence terrestrial hydrology and the energy balance and may thus affect land–atmosphere exchanges. However, only few studies have investigated the importance of soil textures for climate. In this study, we examine the impact of soil texture specification in a regional climate model. We perform climate simulations over Europe using soil maps derived from two different sources: the soil map of the world from the Food and Agricultural Organization and the European Soil Database from the European Commission Joint Research Center. These simulations highlight the importance of the specified soil texture in summer, with differences of up to 2 °C in mean 2-m temperature and 20 % in precipitation resulting from changes in the partitioning of energy at the land surface into sensible and latent heat flux. Furthermore, we perform additional simulations where individual soil parameters are perturbed in order to understand their role for summer climate. These simulations highlight the importance of the vertical profile of soil moisture for evapotranspiration. Parameters affecting the latter are hydraulic diffusivity parameters, field capacity and plant wilting point. Our study highlights the importance of soil properties for climate simulations. Given the uncertainty associated with the geographical distribution of soil texture and the resulting differences between maps from different sources, efforts to improve existing databases are needed. In addition, climate models would benefit from tackling unresolved issues in land-surface modeling related to the high spatial variability in soil parameters, both horizontally and vertically, and to limitations of the concept of soil textural class.  相似文献   
100.
This study illustrates the sensitivity of regional climate change projections to the model physics. A single-model (MM5) multi-physics ensemble of regional climate simulations over the Iberian Peninsula for present (1970–1999) and future (2070–2099 under the A2 scenario) periods is assessed. The ensemble comprises eight members resulting from the combination of two options of parameterization schemes for the planetary boundary layer, cumulus and microphysics. All the considered combinations were previously evaluated by comparing hindcasted simulations to observations, none of them providing clearly outlying climates. Thus, the differences among the various ensemble members (spread) in the future projections could be considered as a matter of uncertainty in the change signals (as similarly assumed in multi-model studies). The results highlight the great dependence of the spread on the synoptic conditions driving the regional model. In particular, the spread generally amplifies under the future scenario leading to a large spread accompanying the mean change signals, as large as the magnitude of the mean projected changes and analogous to the spread obtained in multi-model ensembles. Moreover, the sign of the projected change varies depending on the choice of the model physics in many cases. This, together with the fact that the key mechanisms identified for the simulation of the climatology of a given period (either present or future) and those introducing the largest spread in the projected changes differ significantly, make further claims for efforts to better understand and model the parameterized subgrid processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号