首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   1篇
  国内免费   1篇
大气科学   6篇
地球物理   7篇
地质学   8篇
海洋学   15篇
天文学   10篇
自然地理   4篇
  2021年   1篇
  2020年   3篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   4篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   4篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   3篇
  1996年   5篇
  1993年   1篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1983年   2篇
  1973年   1篇
排序方式: 共有50条查询结果,搜索用时 15 毫秒
21.
Using 3·5 kHz high-resolution seismic data, gravity cores and side-scan sonar imagery, the flow behaviour of submarine, glacigenic debris flows on the Bear Island Trough Mouth Fan, western Barents Sea was studied. During their downslope movement, the sediments within the uppermost part of the debris flows (<3 m) are inferred to have been deformed as a result of the shear stress at the debris–water interface. Thus, the uppermost part of the flow did not move downslope as a rigid plug. If present, a rigid part of the flow was located at least some metres below the surface. At c . 1000 to at least 1600 m water depth, the debris flows eroded and probably incorporated substrate debris. Further downslope, the debris flows moved passively over substrate sediments. The hypothesis of hydroplaning of the debris flow front may explain why the debris flows moved across the lower fan without affecting the underlying sediments. Detailed morphological information from the surface of one of the debris flow deposits reveals arcuate ridges. These features were probably formed by flow surge. Hydroplaning of the debris flow front may also explain the formation of flow surge. The long runout distance of some of the large debris flows could be due to accretion of material to the base of the debris flow, thereby increasing in volume during flow, and/or to hydroplaning suppressing deceleration of the flow.  相似文献   
22.
Devonian evaporites and associated sedimentary rocks in the Norilsk region were contact metamorphosed during emplacement of mafic sills that form part of the end-Permian (~252 Ma) Siberian Traps. We present mineralogical, geochemical and Sr–Nd isotopic data on sedimentary rocks unaffected by metamorphism, and meta-sedimentary rocks from selected contact aureoles at Norilsk, to examine the mechanisms responsible for magma-evaporite interaction and its relation to the end-Permian environmental crisis. The sedimentary rocks include massive anhydrite, rock salt, dolostone, calcareous siltstones and shale, and the meta-sedimentary rocks comprise calcareous hornfels, siliceous hornfels and minor meta-anhydrite and meta-sandstone. Contact metamorphism took place at low pressure and at maximum temperatures corresponding to the phlogopite-diopside stability field. Calcareous hornfels have high CaO, MgO, CΟ2, SΟ3, low SiO2 and initial Sr isotopic ratios of 0.7079–0.7092, features indicative of calcareous siltstone protoliths. Siliceous hornfels, in contrast, have high SiO2, Al2O3, Na2O, low in other major element oxides and initial Sr isotopic ratios of 0.7083–0.7152, consistent with pelitic or shaley protoliths. Loss of CO2 in a subset of calcareous hornfels can be explained by decarbonation reactions during metamorphism, but release of SO2 from evaporites cannot be accounted for by a similar mechanism. Occurrences of wollastonite and a variety of hydrous minerals in the calcareous hornfels are consistent with equilibration with hydrous fluid, which was capable of leaching large quantities of anhydrite in the presence of dissolved NaCl. In this way, substantial sediment-derived sulfur could have been mobilized, incorporated into the magmatic system and released to the atmosphere. The release of CO2 and SO2 from Siberian evaporites added to the variety of toxic gases generated during metamorphism of organic matter, coal and rock salt, contributing to the end-Permian environmental crisis.  相似文献   
23.
A spectrophotometric method is described for the determination of dissolved mono- and polysaccharides in seawater. It is based upon the well known alkaline ferricyanide reaction, but uses the reagent 2,4,6-tripyridyl-s-triazine (TPTZ) to give a strongly colored complex with the reduced iron. The method has been tested on model carbohydrates and other compounds, and also on natural samples of coastal and oceanic waters. Total carbohydrate content of the natural samples ranged from 5.2 to 25.1 μmol glucose-Cl−1. The coefficient of variation was typically below 6% for values near 17 μmol Cl−1 and approximately 10% for values near 3.5 μmol Cl−1.  相似文献   
24.
It is demonstrated that for linear deep sea waves with small directional scattering the particle motion at the sea surface and energy transmission may be retrieved from a wave record by means of the Hilbert transform. A physical interpretation of the envelope of the two-dimensional deep sea waves as well as a new method for wave group analysis is presented.  相似文献   
25.
Several hundred hydrothermal vent complexes were formed in the Vøring Basin as a consequence of magmatic sill emplacement in the late Palaeocene. The 6607/12-1 exploration well was drilled through a 220-m-thick sequence of Eocene–Miocene diatomites with carbonate nodules above the apex of one of these vent complexes. Analysed calcites and dolomites from this interval have isotopic signatures typical for methane seep carbonates, with low 13C signatures of –28 to –54 PDB. The data suggest that the vent complex acted as a fluid migration pathway for about 50×106 years after its formation, leading to near-surface microbial activity and seep carbonate formation.  相似文献   
26.
27.
Observations and model calculations of the concentration of hydrocarbonsat five Scandinavian rural sites during March–June 1993are reported.Decreasing concentrations from March to June are observedat all sites. The highest concentrations of hydrocarbons were found in air massescoming in from the southwest to southeast, indicating that long rangetransport fromcontinental Europe and the U.K. is important in pollution episodes. An episode of elevated concentrations of hydrocarbons observed at three of the sites in the middle of Marchis described and discussed in relation to the synoptic situation and thepresenceof other chemical compounds (NO2, PAN, total nitrate andozone).A Lagrangian numerical model is used to calculate the concentrations of theindividual hydrocarbons at the fivesites and comparison with observations is made.The calculated concentrations for nonmethane hydrocarbons with quite longchemicallifetimes agree well with the observations.For the sum of observed and calculated hydrocarbons the correlationcoefficientsare in the range of 0.65–0.88 for the five sitesand the ratio between calculated and measured concentrations was0.72–0.97, indicating thatthe European VOC emission inventory is quite well estimated.  相似文献   
28.
Several years of continuous measurements of surfaceozone at Norwegian monitoring sites are studied in aclimatological way. The monitoring sites are at rurallocations extending from 58°N, a few hundredkilometers from the European continent and into theArctic at 79°N. The ozone observations are sorted intoclasses of integrated NOx emissions along 96 h backtrajectories. The average seasonal cycles of ozone areestimated for each class separately. The differencesindicate the change from the background air due toanthropogenic emissions. The average seasonal cycle ofozone in the cleanest air masses showed a maximum inspring and a minimum during summer and autumn at allsites, but the spring maximum was more pronounced atthe southernmost locations. Polluted air masses showedan ozone deficit during winter and a surplus duringsummer. The deviation from the background was clearlylinked to the integrated NOx emission along thetrajectories. In summer the calculations indicate thatthe number of ozone molecules formed per NOx moleculedrops with increasing emissions. The average seasonalcycle of ozone at Birkenes for different transportsectors indicate that the most pronounced ozoneformation takes place in air masses from E-Europe/Russia.  相似文献   
29.
Aggradation and fluvial incision controlled by downstream base-level changes at timescales of 10 to 500 kyr is incorporated in classic sequence stratigraphic models. However, upstream climate control on sediment supply and discharge variability causes fluvial incision and aggradation as well. Orbital forcing often regulates climate change at 10 to 500 kyr timescales while tectonic processes such as flexural (un)loading exert a dominant control at timescales longer than 500 kyr. It remains challenging to attribute fluvial incision and aggradation to upstream or downstream processes or disentangle allogenic from autogenic forcing, because time control is mostly limited in fluvial successions. The Palaeocene outcrops of the fluvial Lebo Shale Member in north-eastern Montana (Williston Basin, USA) constitute an exception. This study uses a distinctive tephra layer and two geomagnetic polarity reversals to create a 15 km long chronostratigraphic framework based on the correlation of twelve sections. Three aggradation–incision sequences are identified with durations of approximately 400 kyr, suggesting a relation with long-eccentricity. This age control further reveals that incision occurred during the approach of – or during – a 405 kyr long-eccentricity minimum. A long-term relaxation of the hydrological cycle related to such an orbital phasing potentially exerts an upstream climate control on river incision. Upstream, an expanding vegetation cover is expected because of an increasingly constant moisture supply to source areas. Entrapping by vegetation led to a significantly reduced sediment supply relative to discharge, especially at times of low evapotranspiration. Hence, high discharges resulted in incision. This study assesses the long-eccentricity regulated climate control on fluvial aggradation and incision in a new aggradation–incision sequence model.  相似文献   
30.
Siberian gas venting and the end-Permian environmental crisis   总被引:1,自引:0,他引:1  
The end of the Permian period is marked by global warming and the biggest known mass extinction on Earth. The crisis is commonly attributed to the formation of the Siberian Traps Large Igneous Province although the causal mechanisms remain disputed. We show that heating of Tunguska Basin sediments by the ascending magma played a key role in triggering the crisis. Our conclusions are based on extensive field work in Siberia in 2004 and 2006. Heating of organic-rich shale and petroleum bearing evaporites around sill intrusions led to greenhouse gas and halocarbon generation in sufficient volumes to cause global warming and atmospheric ozone depletion. Basin scale gas production potential estimates show that metamorphism of organic matter and petroleum could have generated > 100,000 Gt CO2. The gases were released to the end-Permian atmosphere partly through spectacular pipe structures with kilometre-sized craters. Dating of a sill intrusion by the U–Pb method shows that the gas release occurred at 252.0 ± 0.4 million years ago, overlapping in time with the end-Permian global warming and mass extinction. Heating experiments to 275 °C on petroleum-bearing rock salt from Siberia suggests that methyl chloride and methyl bromide were significant components of the erupted gases. The results indicate that global warming and ozone depletion were the two main drivers for the end-Permian environmental crisis. We demonstrate that the composition of the heated sedimentary rocks below the flood basalts is the most important factor in controlling whether a Large Igneous Provinces causes an environmental crisis or not. We propose that a similar mechanism could have been responsible for the Triassic-Jurassic (~ 200 Ma) global warming and mass extinction, based on the presence of thick sill intrusions in the evaporite deposits of the Amazon Basin in Brazil.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号