首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   7篇
测绘学   2篇
大气科学   2篇
地球物理   25篇
地质学   26篇
海洋学   19篇
天文学   22篇
自然地理   11篇
  2021年   1篇
  2019年   2篇
  2018年   2篇
  2017年   6篇
  2016年   2篇
  2015年   2篇
  2014年   6篇
  2013年   5篇
  2012年   8篇
  2011年   9篇
  2010年   8篇
  2008年   6篇
  2007年   6篇
  2006年   2篇
  2005年   4篇
  2004年   1篇
  2003年   7篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1996年   2篇
  1994年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1978年   2篇
  1977年   2篇
排序方式: 共有107条查询结果,搜索用时 78 毫秒
81.
82.
Abstract The internal structures of the Nojima Fault, south-west Japan, are examined from mesoscopic observations of continuous core samples from the Hirabayashi Geological Survey of Japan (GSJ) drilling. The drilling penetrated the central part of the Nojima Fault, which ruptured during the 1995 Kobe earthquake (Hyogo-ken Nanbu earthquake) ( M 7.2). It intersected a 0.3 m-thick layer of fault gouge, which is presumed to constitute the fault core (defined as a narrow zone of extremely concentrated deformation) of the Nojima Fault Zone. The rocks obtained from the Hirabayashi GSJ drilling were divided into five types based on the intensities of deformation and alteration: host rock, weakly deformed and altered granodiorite, fault breccia, cataclasite, and fault gouge. Weakly deformed and altered granodiorite is distributed widely in the fault zone. Fault breccia appears mostly just above the fault core. Cataclasite is distributed mainly in a narrow (≈1 m wide) zone in between the fault core and a smaller gouge zone encountered lower down from the drilling. Fault gouge in the fault core is divided into three types based on their color and textures. From their cross-cutting relationships and vein development, the lowest fault gouge in the fault core is judged to be newer than the other two. The fault zone characterized by the deformation and alteration is assumed to be deeper than 426.2 m and its net thickness is > 46.5 m. The fault rocks in the hanging wall (above the fault core) are deformed and altered more intensely than those in the footwall (below the fault core). Furthermore, the intensities of deformation and alteration increase progressively towards the fault core in the hanging wall, but not in the footwall. The difference in the fault rock distribution between the hanging wall and the footwall might be related to the offset of the Nojima Fault and/or the asymmetrical ground motion during earthquakes.  相似文献   
83.
Abstract. The distribution of Na, K, Ca, Mg, Mn and Fe between the granodiorite JG-la, one of the geochemical standard rocks, and 2M NaCl aqueous solution was experimentally determined at temperatures of 300 to 800C and a pressure of 1 kb using standard cold seal-type pressure vessels. The solid run products melted partially at 800C. Only K shows a significantly different behavior from the experiments using the basalt JB-la (Uchida and Tsutsui, 2000) due to the presence of ortho-clase in the JG-la. The transition elements tend to be preferably partitioned into the aqueous chloride solutions with increasing temperature. At 800C and 1 kb, the Fe concentration of the aqueous chloride solutions reached up to 5,000 ppm, and the Mn concentration up to 350 ppm. The distribution coefficient, KD, i = Ci, sol/Ci, rock, is in the order of Na>K>Mn>Ca> Fe>Mg at 300C, but changed in the order of Mn>N>K>Fe>Ca>Mg at 800C. The distribution coefficients of the divalent cations for the JG-la are higher than those for the JB-1a. The distribution coefficient of the transition elements, Fe and Mn, increases significantly with increasing temperature. The thermodynamic analysis for aqueous speciation revealed that this is attributable to the formation of the tri-chloro complexes of the transition elements at higher temperatures.  相似文献   
84.
Velocity as well as attenuation factorQ –1 ofP-wave in a dry granitic rock sample under uniaxial compressions were measured in the range of frequency between 100 kHz and 710 kHz by using the pulse transmission technique. Above the stress of 0.5 f , where f is the fracture stress, theP-wave velocity decreases with increasing axial stress, whereasQ –1 increases. Particularly, the change ofQ –1 is greater for high frequency than for low frequency. At a given stress level, the higher the frequency, the higher theP-wave velocity and the largerQ –1. This result means that the velocity decrease with increasing stress is smaller for higher frequency. Because of this frequency-dependence of velocity decrease, theP-wave in the rock under dilatant state shows dispersion. The body wave dispersion is more remarkable at higher stress, and is not found in a homogeneous material with no cracks. Thus the disperison is attributed to the generation of cracks. When the frequency-dependence ofQ –1 is approximated asf n in the present frequency range, the exponentn takes a value from 0.63 to 0.77.  相似文献   
85.
Beppu Bay is a shallow basin located at the western end of the Seto Inland Sea with a sill depth ofca. 40 m. The bottom water (belowca. 65 m in summer andca. 70 m in winter) was anoxic and contained high concentrations of hydrogen sulfide, phosphate and ammonium. Maximum concentrations of nitrate and nitrite appeared near the top of the thermocline, suggesting the occurrence of bacterial nitrification in this layer and of bacterial denitrification in the anoxic bottom water. Concentrations of particulate phosphorus and particulate iron were highest near the bottom of the thermocline. The distribution of phosphorus in this bay is probably controlled by a dissolution-diffusion-precipitation cycle of iron or its hydrous oxides.  相似文献   
86.
In the Suo-Nada area of the Seto Inland Sea, Japan, sedimentation rates and the sedimentary record of anthropogenic metal loads were determined by combining the Pb-210 dating technique with heavy metal analysis of the sediments. The sedimentation rates vary from 0.11 to 0.27 g cm–2 yr–1. Lower sedimentation rates were observed in the eastern part of the basin which is characterized by a bottom with sand and gravel, and fast tidal currents.Anthropogenic and natural loads of copper and zinc into the sediments are 34 and 326, and 65 and 375 ton yr–1, respectively. The anthropogenic loads are fairly low compared with those of the other main areas of sediment accumulation in the Seto Inland Sea. The highest level of zinc and copper pollution was observed in the western part of the basin because of waste discharge from an old and big ironworks outside basin since the early 1900's.  相似文献   
87.
Sedimentation rates in ten sediment cores from Hiroshima Bay in the Seto Inland Sea of Japan were determined with the |2210|0Pb technique, and heavy metals were analyzed. The sedimentation rates vary from 0.18 to 0.33 g cm|2-2|0 yr|2-1|0. The highest sedimentation rates were observed in the northern part of the bay at the mouth of Ota River, while lower sedimentation rates not more than 0.20 g cm−2 yr−1 were observed at stations close to narrow water-ways, or where water depth was shallow. The contents of copper and zinc in the sediment cores began to increase around 1930 as a result of increased human activity, and have remained almost unchanged since 1970 possibly because of regulation of pollutant discharge. The natural background values of copper and zinc in the sediment of this bay range from 16 to 27 mgkg−1 and 70 to 105 mg kg−1, respectively. The total amounts of anthropogenic copper and zinc deposited in the sediments since about 1930 are estimated to be 0.5–2.7 ton km−2 and 2.2–14.5 ton km−2, respectively. At the present-day, the anthropogenic loads of copper and zinc to the sediments of the whole bay are 26 ton yr−1 and 183 ton yr−1, and these values constitute 39% and 48% of the total sedimentary loads at the present-day, respectively.  相似文献   
88.
The metal load into sediments and the change in the sedimentary environment of Osaka Bay in the Seto Inland Sea have been studied through geochemical analysis of core sediments, using both Pb-210 dating and a selective chemical leaching technique. Analytical results from a 6-m core of sediment show that copper and zinc pollution started in the late 1800's and the present enrichment ratios of copper and zinc, relative to background levels (20 mg kg–1 for Cu and 94 mg kg–1 for Zn), are 2.8 and 4.1, respectively. The present anthropogenic copper and zinc loads into Osaka Bay sediments, are 47 and 368 ton yr–1, while natural copper and zinc loads are 40 and 186 ton yr–1, respectively. Osaka Bay sediment at the present day is considered to be seriously polluted by zinc, now. The vertical profiles of copper and zinc in four successively separated fractions (10% acetic acid soluble fraction: F-HAC, 0.1M hydrochloric acid-soluble fraction: F-HCl, hydrogen peroxide-soluble fraction: F-H2O2 and hydrofluoric acid-soluble fraction: F-HF) from the core sediments indicate that enrichments of copper and zinc in the upper layer of the sediment are dependent on increases in the metal contents of the F-HAC, F-HCl and F-H2O2 fractions. Copper in F-HAC, and zinc in F-HAC and F-HCl, seem to be of anthropogenic origin.Results of sequential studies of the whole Seto Inland Sea can be summarized as follows: At the present time, the sedimentary loads of copper and zinc over the whole Seto Inland Sea area are 630 and 3,500 ton yr–1, respectively, while the natural and anthropogenic loads are 320 and 310 ton yr–1 for copper and 1,800 and 1,700 ton yr–1 for zinc, respectively.  相似文献   
89.
We analyse shortwave infrared thermal data of the phase 1 eruption of Unzen Volcano (Japan) extracted from eight nighttime Thematic Mapper (TM) images taken from the Landsat 5 satellite between October 1991 and November 1992. We identify two discrete regions of the dome that were heated to high temperature by the ongoing eruptive activity; a fumarolically heated region and an area associated with the effusion of new lava. We concentrate analysis on the fumarolically heated region and investigate the relationships between parameters derived from the infrared radiance data and the nature of the fumarolic gas and magma fluxes. Temporal variations in the parameters derived from the radiance data closely follow those observed in the measured rate of magma effusion. The positive correlation observed between the fumarolically driven shortwave infrared flux and the magma discharge rate (r2=0.64) indicates that degassing occurred efficiently and in proportion to the amount of magma supplied. Over our monitoring period, the data suggest that gas accumulation within the edifice did not occur, this conclusion agreeing with a previous finding obtained using correlation spectrometer (COSPEC) analysis of SO2 flux rates. A positive correlation (r2=0.56) was also found between the mean radiance of the pixels in the fumarolically heated region and the overall size of that region. This suggests a potential mechanism whereby, when gas pressure within the edifice increased, excess gas escaped through additional pathways to the surface as well through an increased flux at the main fumarolic vents.  相似文献   
90.
Clifftop coastal boulders transported by storm waves or tsunamis have been reported around the world. Although numerical calculation of boulder transport is a strong tool for the identification of tsunami or storm boulders, and for estimation of the wave size emplacing boulders, models which can reasonably solve boulder transport from below a cliff or from a cliff-edge onto a cliff-top do not yet exist. In this study, we developed a new numerical formulation for cliff-top deposition of boulders from the cliff edge or below the cliff, with validation from laboratory tests. We then applied the model using storm and tsunami wave forcing to simulate the observed boulder deposits at the northwest coast of Hachijo Island, Japan. Using the model, the actual distribution of boulders was explained well using a reasonable storm wave height without assumption of anomalously high-water level by storm surge. Results show that boulder transport from the cliff edge or under the cliff onto the cliff-top was possible from a tsunami with periods of 5~10 min or storm waves with no storm surge. However, the actual distribution of boulders on the cliff was explained only by storm waves, but not by tsunami. Therefore, the boulders distributed at this site are likely of storm wave origin. Our developed model for the boulder transport calculation can be useful for identifying a boulder's origin and can reasonably calculate cliff-top deposition of boulders by tsunami and storm waves. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号