首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   7篇
测绘学   2篇
大气科学   2篇
地球物理   25篇
地质学   26篇
海洋学   19篇
天文学   22篇
自然地理   11篇
  2021年   1篇
  2019年   2篇
  2018年   2篇
  2017年   6篇
  2016年   2篇
  2015年   2篇
  2014年   6篇
  2013年   5篇
  2012年   8篇
  2011年   9篇
  2010年   8篇
  2008年   6篇
  2007年   6篇
  2006年   2篇
  2005年   4篇
  2004年   1篇
  2003年   7篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1996年   2篇
  1994年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1978年   2篇
  1977年   2篇
排序方式: 共有107条查询结果,搜索用时 31 毫秒
91.
Abstract Mineralogical and geochemical studies on the fault rocks from the Nojima–Hirabayashi borehole, south-west Japan, are performed to clarify the alteration and mass transfer in the Nojima Fault Zone at shallow depths. A complete sequence from the hornblende–biotite granodiorite protolith to the fault core can be observed without serious disorganization by surface weathering. The parts deeper than 426.2 m are in the fault zone where rocks have suffered fault-related deformation and alteration. Characteristic alteration minerals in the fault zone are smectite, zeolites (laumontite, stilbite), and carbonate minerals (calcite and siderite). It is inferred that laumontite veins formed at temperatures higher than approximately 100°C during the fault activity. A reverse component in the movement of the Nojima Fault influences the distribution of zeolites. Zeolite is the main sealing mineral in relatively deep parts, whereas carbonate is the main sealing mineral at shallower depths. Several shear zones are recognized in the fault zone. Intense alteration is localized in the gouge zones. Rock chemistry changes in a different manner between different shear zones in the fault zone. The main shear zone (MSZ), which corresponds to the core of the Nojima Fault, shows increased concentration of most elements except Si, Al, Na, and K. However, a lower shear zone (LSZ-2), which is characterized by intense alteration rather than cataclastic deformation, shows a decreased concentration of most elements including Ti and Zr. A simple volume change analysis based on Ti and Zr immobility, commonly used to examine the changes in fault rock chemistry, cannot account fully for the different behaviors of Ti and Zr among the two gouge zones.  相似文献   
92.
The horizontal and vertical distributions of manganese in sea water, interstitial water and sediments in the Hiro Bay, Seto Inland Sea, Japan, have been investigated. The outflow from a pulp mill is the primary source of manganese in this bay. The industrial waste water contained 0.19 mg l–1 of manganese, mostly in a dissolved form. This manganese diffused out both horizontally and vertically into the surrounding sea water. The content of manganese in the liquid and solid phases in the sediments, however, are inverse with that in the sea water; namely the lowest concentration of manganese in the sediments was observed at the station near the outfall and manganese concentration increased with the distance from the outfall.  相似文献   
93.
Coastal polynyas off East Queen Maud Land in Antarctica are examined using NOAA AVHRR infrared data. From image analyses, two locations of coastal polynyas in this region are identified; one in Breid Bay and the other along the shelf break. The areal coverage of the Breid Bay polynya is significantly related to the strength of katabatic winds, which maintain their strength over the coastal sea due to land topography favoring for their confluence, thereby being capable of removing newly formed ice. Land fast ice in the eastern part of the bay also plays an additional role in the formation mechanism. It is also found that the areal coverage of coastal polynyas in this region fluctuate coherently. Moreover, these fluctuations correspond to the synoptic index, which measures the strength of the offshore wind, with their peaks closely associated with the areal peaks. These facts strongly suggest the influence of synoptic scale weather on the formation and maintenance of polynyas in this region.  相似文献   
94.
From July to November, the thermocline which has strong temperature gradient (0.7C m–1) is formed in the bottom water of Beppu Bay, and it prevents the downward mixing of surface water. This has caused the bottom water of the basin to become depleted in oxygen, and in November the bottom water below about 60 m depth becomes anoxic. Accordingly manganese and iron are reduced and more soluble under the anoxic condition, those concentrations are high relative to surface water, and the maximums are 1,240g l–1 and 80g l–1. Under the anoxic condition, the flux of dissolved manganese from the sediment is about 10g cm–2 day–1.  相似文献   
95.
The porphyry Cu deposits at Waisoi in Namosi district, Viti Levu are separated into two deposits: the Waisoi East deposit and the Waisoi West deposit. In the Waisoi East deposit, quartz porphyry is exposed and in the Waisoi West deposit, diorite porphyry is sporadically exposed in addition to a small body of quartz porphyry. The mineralization in the Waisoi East deposit is characterized by the bornite–chalcopyrite–pyrite assemblage associated with traces of molybdenite and native gold. Polyphase fluid inclusions in stockwork quartz veinlets show homogenization temperatures ranging from 210 to >500°C. The high‐grade Cu mineralization in the Waisoi West deposit is characterized by the bornite–chalcopyrite–pyrite assemblage accompanied with sheeted and stockwork quartz veinlets. Polyphase fluid inclusions occasionally containing hematite flakes in quartz veinlets in the center of the Waisoi West deposit homogenize at temperatures ranging from 450°C to >500°C. However, fluid inclusions in stockwork quartz veinlets in the periphery, homogenize at lower temperatures around 210°C. Both in the Waisoi East and Waisoi West deposits, primary bornite–chalcopyrite–pyrite assemblage in the high Cu‐grade zone was deposited at the upper stability limit of chalcopyrite with respect to sulfur fugacity. Thus, the principal Cu mineralization at the Waisoi deposits occurred at a relatively high sulfur fugacity, that is, in a high‐sulfidation environment.  相似文献   
96.
Atmospheric activity concentrations of 212Pb and short-lived 222Rndaughters, together with meteorological elements, have been observed continuously atthree sites at Kamisaibara Village in Japan. In addition, atmospheric activity concentrationof 222Rn, equilibrium-equivalent concentration of 222Rn and conditionsof the lower atmosphere were observed for three intensive observation periods at Akawase,one of the three sites in Kamisaibara Village. The equilibrium-equivalent concentration of222Rn is almost the same as the atmospheric activity concentration of short-lived222Rn daughters.The activity concentrations of 212Pb and the short-lived 222Rn daughtersand their ratio were low in the daytime owing to convective mixing, and high at nightowing to the surface-based inversion during periods of no precipitation. Their variationshave several patterns corresponding to the scale of the drainage wind or weak mixing.Mechanical mixing due to strong winds through both day and night during the first andsecond observation periods made the atmospheric activity concentrations of 212Pb and the short-lived 222Rn daughters continuously low. However, their ratios werecontinuously high during the first period yet continuously low during the second period.This difference can be explained by the effect ofextraction of 220Rn and 222Rndue to strong winds and snow cover. There were also cases in which the ratio of theatmospheric activity concentration of 212Pb to that of the short-lived 222Rndaughters at night was equal to or less than the ratio in the daytime. Thisinverse trend, asin the periods of no precipitation mentioned above, is considered to be due to near-neutralconditions on these nights.We find a difference in the ratio of the equilibrium-equivalent concentration of222Rn (the activity concentration of short-lived 222Rn daughters) tothe activity concentration of 222Rn during the first observation period and thatduring the second. The difference can be explained by snow cover on the ground. Wealso find differences among the ratios of the activity concentration of the short-lived222Rn daughters to that of 222Rn during the three observation periods.These differences can be explained by the submergence of paddy fields.  相似文献   
97.
98.
Abstract. Cathodoluminescence (CL) color, rare earth element (REE) content, sulfur and oxygen isotopes and fluid inclusions of anhydrite, which frequently filled in hydrothermal veins in the Kakkonda geothermal system, were investigated to elucidate the spatial, temporal and genetical evolution of fluids in the deep reservoir. The anhydrite samples studied are classified into four types based on CL colors and REE contents: type-N (no color), type-G (green color), type-T (tan color) and type-S (tan color with a high REE content). In the shallow reservoir, only type-N anhydrite is observed. In the deep reservoir, type-G anhydrite occurs in vertical veins whereas type-T and -N in lateral veins. Type-S anhydrite occurs in the heat-source Kakkonda Granite. The CL textures revealed that type-G anhydrite deposited earlier than type-T in the deep reservoir, implying that fracture system was changed from predominantly vertical to lateral.
Studies of fluid inclusions and δ34S and δ18O values of the samples indicate that type-N anhydrite deposited from diluted fluids derived from meteoric water, whereas type-G, -T and -S anhydrites deposited from magmatic brines derived from the Kakkonda Granite with the exception of some of type-G with recrystallization texture and no primary fluid inclusion, which deposited from fossil seawater preserved in the sedimentary rocks. Type-G, -T and -S anhydrites exhibit remarkably different chondrite-normalized REE patterns with a positive Eu anomaly, with a convex shape (peak at Sm or Eu) and with a negative Eu anomaly, respectively. The difference in the patterns might result from the different extent of hydrothermal alteration of the reservoir rocks and contribution of the magmatic fluids.  相似文献   
99.
Seasonal and spatial variations of particulate organic carbon (POC) flux were observed with sediment traps at three sites in the Japan Sea (western and eastern Japan Basin and Yamato Basin). In order to investigate the transport processes of POC, radiocarbon (14C) measurements were also carried out. Annual mean POC flux at 1 km depth was 30.7 mg m−2day−1 in the western Japan Basin, 12.0 mg m−2day−1 in the eastern Japan Basin and 23.8 mg m−2day−1 in the Yamato Basin. At all stations, notably higher POC flux was observed in spring (March–May), indicating biological production and rapid sinking of POC in this season. Sinking POC in the high flux season showed modern Δ14C values (>0‰) and aged POC (Δ14C < −40‰) was observed in winter (December–January). The Δ14C values in sinking POC were negatively correlated with aluminum concentration, indicating that Δ14C is strongly related to the lateral supply of lithogenic materials. The Δ14C values also showed correlations with excess manganese (Mnxs) concentrations in sinking particles. The Δ14C-Mnxs relationship suggested that (1) the majority of the aged POC was advected by bottom currents and incorporated into sinking particles, and (2) some of the aged POC might be supplied from the sea surface at the trap site as part of terrestrial POC. From the difference in the Δ14C-Mnxs relationships between the Japan Basin and the Yamato Basin, we consider that basin-scale transport processes of POC occur in the Japan Sea.  相似文献   
100.
Constraining physical parameters of tephra dispersion and deposition from explosive volcanic eruptions is a significant challenge, because of both the complexity of the relationship between tephra distribution and distance from the vent and the difficulties associated with direct and comprehensive real-time observations. Three andesitic subplinian explosions in January 2011 at Shinmoedake volcano, Japan, are used as a case study to validate selected empirical and theoretical models using observations and field data. Tephra volumes are estimated using relationships between dispersal area and tephra thickness or mass/area. A new cubic B-spline interpolation method is also examined. Magma discharge rate is estimated using theoretical plume models incorporating the effect of wind. Results are consistent with observed plume heights (6.4–7.3 km above the vent) and eruption durations. Estimated tephra volumes were 15–34?×?106 m3 for explosions on the afternoon of 26 January and morning of 27 January, and 5.0–7.6?×?106 m3 for the afternoon of 27 January; magma discharge rates were in the range 1–2?×?106 kg/s for all three explosions. Clast dispersal models estimated plume height at 7.1?±?1 km above the vent for each explosion. The three subplinian explosions occurred with approximately 12-h reposes and had similar mass discharge rates and plume heights but decreasing erupted magma volumes and durations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号