首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   152篇
  免费   9篇
  国内免费   1篇
测绘学   1篇
大气科学   18篇
地球物理   44篇
地质学   41篇
海洋学   13篇
天文学   33篇
自然地理   12篇
  2024年   1篇
  2022年   1篇
  2021年   2篇
  2020年   4篇
  2019年   8篇
  2018年   6篇
  2017年   6篇
  2016年   7篇
  2015年   3篇
  2014年   5篇
  2013年   9篇
  2012年   7篇
  2011年   10篇
  2010年   3篇
  2009年   7篇
  2008年   7篇
  2007年   7篇
  2006年   6篇
  2005年   6篇
  2004年   3篇
  2003年   3篇
  2001年   2篇
  2000年   8篇
  1999年   1篇
  1998年   4篇
  1997年   3篇
  1996年   4篇
  1995年   4篇
  1994年   6篇
  1993年   1篇
  1990年   3篇
  1985年   1篇
  1984年   2篇
  1983年   4篇
  1982年   2篇
  1979年   1篇
  1975年   3篇
  1973年   1篇
  1960年   1篇
排序方式: 共有162条查询结果,搜索用时 78 毫秒
11.
Cerro do Jarau is a conspicuous, circular morpho‐structural feature in Rio Grande do Sul State (Brazil), with a central elevated core in the otherwise flat “Pampas” terrain typical for the border regions between Brazil and Uruguay. The structure has a diameter of approximately 13.5 km. It is centered at 30o12′S and 56o32′W and was formed on basaltic flows of the Cretaceous Serra Geral Formation, which is part of the Paraná‐Etendeka Large Igneous Province (LIP), and in sandstones of the Botucatu and Guará formations. The structure was first spotted on aerial photographs in the 1960s. Ever since, its origin has been debated, sometimes in terms of an endogenous (igneous) origin, sometimes as the result of an exogenous (meteorite impact) event. In recent years, a number of studies have been conducted in order to investigate its nature and origin. Although the results have indicated a possible impact origin, no conclusive evidence could be produced. The interpretation of an impact origin was mostly based on the morphological characteristics of the structure; geophysical data; as well as the occurrence of different breccia types; extensive deformation/silicification of the rocks within the structure, in particular the sandstones; and also on the widespread occurrence of low‐pressure deformation features, including some planar fractures (PFs). A detailed optical microscopic analysis of samples collected during a number of field campaigns since 2007 resulted in the disclosure of a large number of quartz grains from sandstone and monomict arenite breccia from the central part of the structure with PFs and feather features (FFs), as well as a number of quartz grains exhibiting planar deformation features (PDFs). While most of these latter grains only carry a single set of PDFs, we have observed several with two sets, and one grain with three sets of PDFs. Consequently, we here propose Cerro do Jarau as the seventh confirmed impact structure in Brazil. Cerro do Jarau, together with Vargeão Dome (Santa Catalina state) and Vista Alegre (Paraná State), is one of very few impact structures on Earth formed in basaltic rocks.  相似文献   
12.
This paper reviews major findings of the Multidisciplinary Experimental and Modeling Impact Crater Research Network (MEMIN). MEMIN is a consortium, funded from 2009 till 2017 by the German Research Foundation, and is aimed at investigating impact cratering processes by experimental and modeling approaches. The vision of this network has been to comprehensively quantify impact processes by conducting a strictly controlled experimental campaign at the laboratory scale, together with a multidisciplinary analytical approach. Central to MEMIN has been the use of powerful two-stage light-gas accelerators capable of producing impact craters in the decimeter size range in solid rocks that allowed detailed spatial analyses of petrophysical, structural, and geochemical changes in target rocks and ejecta. In addition, explosive setups, membrane-driven diamond anvil cells, as well as laser irradiation and split Hopkinson pressure bar technologies have been used to study the response of minerals and rocks to shock and dynamic loading as well as high-temperature conditions. We used Seeberger sandstone, Taunus quartzite, Carrara marble, and Weibern tuff as major target rock types. In concert with the experiments we conducted mesoscale numerical simulations of shock wave propagation in heterogeneous rocks resolving the complex response of grains and pores to compressive, shear, and tensile loading and macroscale modeling of crater formation and fracturing. Major results comprise (1) projectile–target interaction, (2) various aspects of shock metamorphism with special focus on low shock pressures and effects of target porosity and water saturation, (3) crater morphologies and cratering efficiencies in various nonporous and porous lithologies, (4) in situ target damage, (5) ejecta dynamics, and (6) geophysical survey of experimental craters.  相似文献   
13.
We analyze the well-observed flare and coronal mass ejection (CME) from 1 October 2011 (SOL2011-10-01T09:18) covering the complete chain of effects – from Sun to Earth – to better understand the dynamic evolution of the CME and its embedded magnetic field. We study in detail the solar surface and atmosphere associated with the flare and CME using the Solar Dynamics Observatory (SDO) and ground-based instruments. We also track the CME signature off-limb with combined extreme ultraviolet (EUV) and white-light data from the Solar Terrestrial Relations Observatory (STEREO). By applying the graduated cylindrical shell (GCS) reconstruction method and total mass to stereoscopic STEREO-SOHO (Solar and Heliospheric Observatory) coronagraph data, we track the temporal and spatial evolution of the CME in the interplanetary space and derive its geometry and 3D mass. We combine the GCS and Lundquist model results to derive the axial flux and helicity of the magnetic cloud (MC) from in situ measurements from Wind. This is compared to nonlinear force-free (NLFF) model results, as well as to the reconnected magnetic flux derived from the flare ribbons (flare reconnection flux) and the magnetic flux encompassed by the associated dimming (dimming flux). We find that magnetic reconnection processes were already ongoing before the start of the impulsive flare phase, adding magnetic flux to the flux rope before its final eruption. The dimming flux increases by more than 25% after the end of the flare, indicating that magnetic flux is still added to the flux rope after eruption. Hence, the derived flare reconnection flux is most probably a lower limit for estimating the magnetic flux within the flux rope. We find that the magnetic helicity and axial magnetic flux are lower in the interplanetary space by ~?50% and 75%, respectively, possibly indicating an erosion process. A CME mass increase of 10% is observed over a range of \({\sim}\,4\,\mbox{--}\,20~\mathrm{R}_{\odot }\). The temporal evolution of the CME-associated core-dimming regions supports the scenario that fast outflows might supply additional mass to the rear part of the CME.  相似文献   
14.
In this study over 100 Pc5 events observed on the SAMNET magnetometer array have been catalogued. The ground horizontal polarization of these waves has been investigated and it has been shown that there are large differences between the polarization azimuth distributions on either side of noon. In the morning the azimuth distributions are spread evenly across all possible orientations whereas in the afternoon they are predominantly in a North-South orientation. The difference appears to be the result of a specific polarization pattern that occurred across the SAMNET array for 31 of the Pc5 events. These 31 Pc5 events all occurred in the morning sector, close to the dawn terminator. It is suggested that this special polarization pattern is a consequence of ionospheric conductivity gradients that occur at around dawn. This theory is reinforced by the comparison of the local times of these polarization variations with the local time of sunrise. By employing ionospheric conductivity data from the EISCAT radar for two of these Pc5 events, this connection has been studied in more detail.  相似文献   
15.
16.
 We have developed a new method to accelerate tracer simulations to steady-state in a 3-D global ocean model, run off-line. Using this technique, our simulations for natural 14C ran 17 times faster when compared to those made with the standard non-accelerated approach. For maximum acceleration we wish to initialize the model with tracer fields that are as close as possible to the final equilibrium solution. Our initial tracer fields were derived by judiciously constructing a much faster, lower-resolution (degraded), off-line model from advective and turbulent fields predicted from the parent on-line model, an ocean general circulation model (OGCM). No on-line version of the degraded model exists; it is based entirely on results from the parent OGCM. Degradation was made horizontally over sets of four adjacent grid-cell squares for each vertical layer of the parent model. However, final resolution did not suffer because as a second step, after allowing the degraded model to reach equilibrium, we used its tracer output to re-initialize the parent model (at the original resolution). After re-initialization, the parent model must then be integrated only to a few hundred years before reaching equilibrium. To validate our degradation-integration technique (DEGINT), we compared 14C results from runs with and without this approach. Differences are less than 10‰ throughout 98.5% of the ocean volume. Predicted natural 14C appears reasonable over most of the ocean. In the Atlantic, modeled Δ14C indicates that as observed, the North Atlantic Deep Water (NADW) fills the deep North Atlantic, and Antartic Intermediate Water (AAIW) infiltrates northward; conversely, simulated Antarctic Bottom Water (AABW) does not penetrate northward beyond the equator as it should. In the Pacific, in surface eastern equatorial waters, the model produces a north–south assymetry similar to that observed; other global ocean models do not, because their resolution is inadequate to resolve equatorial dynamics properly, particularly the intense equatorial undercurrent. The model’s oldest water in the deep Pacific (at −239‰) is close to that observed (−248‰), but is too deep. Surface waters in the Southern Ocean are too rich in natural 14C due to inadequacies in the OGCM’s thermohaline forcing. Received: 18 March 1997 / Accepted: 27 July 1997  相似文献   
17.
18.
Abstract– We report Mg‐Al and Ca‐Ti isotopic data for meteoritic nanodiamonds separated from the Allende CV3 and Murchison CM2 meteorites. The goal of this study was to search for excesses in 26Mg and 44Ca, which can be attributed to the in situ decay of radioactive and now extinct 26Al and 44Ti, respectively. Previous work on presolar SiC and graphite had shown that 26Al/27Al and 44Ti/48Ti ratios in presolar grains can be used to discriminate between different types of stellar sources. Aluminum and Ti concentrations are low in the meteoritic nanodiamonds of this study. Murchison nanodiamonds have higher Al and Ti concentrations than the Allende nanodiamonds. This can be attributed to contamination and the presence of presolar SiC in the Murchison nanodiamond samples. 26Mg/24Mg and 44Ca/40Ca ratios are close to normal in Allende nanodiamonds with upper limits on the initial 26Al/27Al and 44Ti/48Ti ratios of approximately 1 × 10?3. These ratios are factors of 10–1000 and, respectively, 1–1000 lower than those of presolar SiC and graphite grains from supernovae. The 26Al/27Al and 44Ti/48Ti data for nanodiamonds are compatible with an asymptotic giant branch star or solar system origin, but not with a supernova origin of a major fraction of meteoritic nanodiamonds. The latter possibility cannot be excluded, though, as the diamond separates may contain significant amounts of contaminating Al and Ti, which would lower the inferred 26Al/27Al and 44Ti/48Ti ratios considerably.  相似文献   
19.
During the Pleistocene, the Rhine glacier system acted as a major south–north erosion and transport medium from the Swiss Alps into the Upper Rhine Graben, which has been the main sediment sink forming low angle debris fans. Only some aggradation resulted in the formation of terraces. Optically stimulated luminescence (OSL) and radiocarbon dating have been applied to set up a more reliable chronological frame of Late Pleistocene and Holocene fluvial activity in the western Hochrhein Valley and in the southern part of the Upper Rhine Graben. The stratigraphically oldest deposits exposed, a braided-river facies, yielded OSL age estimates ranging from 59.6 ± 6.2 to 33.1 ± 3.0 ka. The data set does not enable to distinguish between a linear age increase triggered by a continuous autocyclical aggradation or two (or more) age clusters, for example around 35 ka and around 55 ka, triggered by climate change, including stadial and interstadial periods (sensu Dansgaard–Oeschger cycles). The braided river facies is discontinuously (hiatus) covered by coarse-grained gravel-rich sediments deposited most likely during a single event or short-time period of major melt water discharge postdating the Last Glacial Maximum. OSL age estimates of fluvial and aeolian sediments from the above coarse-grained sediment layer are between 16.4 ± 0.8 and 10.6 ± 0.5 ka, and make a correlation with the Late Glacial period very likely. The youngest fluvial aggradation period correlates to the beginning of the Little Ice Age, as confirmed by OSL and radiocarbon ages.  相似文献   
20.
The trace element signatures of fluids were investigated by leaching experiments on natural samples of partly altered mafic igneous rocks recovered from the drilling site 1,256 of ODP Leg 206 on the Cocos plate (Central America). Experiments with ultrapure water were performed at 400 °C/0.4 GPa and 500 °C/0.7 GPa. Both fluids and residual solids were examined to obtain the partition coefficients (Dfluid/rock) of various trace elements. Element partition coefficients (Dfluid/rock) obtained at 500 °C/0.7 GPa are significantly lower compared to results obtained at 400 °C/0.4 GPa, which is in contrast to observations at higher pressures (2.2–6 GPa) and temperatures between 700 and 1,400 °C (Kessel et al. in Earth Planet Sci Lett 237: 873–892, 2005a; Spandler et al. in Chem Geol 239: 228–249, 2007). This finding may indicate a considerable pressure effect on the leaching processes and strongly divergent fluid–rock interactions in the upper part of a subduction zone at 0.4–0.7 GPa compared to deeper subduction areas with higher pressures. Furthermore, this may be interpreted as one of the earliest fractionation processes during the subduction of crustal material.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号