首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   0篇
  国内免费   1篇
大气科学   2篇
地球物理   3篇
地质学   5篇
海洋学   1篇
天文学   16篇
自然地理   1篇
  2020年   2篇
  2019年   1篇
  2017年   1篇
  2012年   4篇
  2011年   1篇
  2010年   4篇
  2008年   1篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2001年   1篇
  1996年   1篇
  1994年   2篇
  1993年   2篇
  1985年   1篇
  1983年   2篇
  1975年   1篇
排序方式: 共有28条查询结果,搜索用时 359 毫秒
11.
An environmental concern with hydraulic fracturing for shale gas is the risk of groundwater and surface water contamination. Assessing this risk partly involves the identification and understanding of groundwater–surface water interactions because potentially contaminating fluids could move from one water body to the other along hydraulic pathways. In this study, we use water quality data from a prospective shale gas basin to determine: if surface water sampling could identify groundwater compartmentalisation by low-permeability faults; and if surface waters interact with groundwater in underlying bedrock formations, thereby indicating hydraulic pathways. Variance analysis showed that bedrock geology was a significant factor influencing surface water quality, indicating regional-scale groundwater–surface water interactions despite the presence of an overlying region-wide layer of superficial deposits averaging 30–40 m thickness. We propose that surface waters interact with a weathered bedrock layer through the complex distribution of glaciofluvial sands and gravels. Principal component analysis showed that surface water compositions were constrained within groundwater end-member compositions. Surface water quality data showed no relationship with groundwater compartmentalisation known to be caused by a major basin fault. Therefore, there was no chemical evidence to suggest that deeper groundwater in this particular area of the prospective basin was reaching the surface in response to compartmentalisation. Consequently, in this case compartmentalisation does not appear to increase the risk of fracking-related contaminants reaching surface waters, although this may differ under different hydrogeological scenarios.  相似文献   
12.
13.
The origin of the highest-energy particles in nature, ultra-high-energy(UHE) cosmic rays, is still unknown. In order to resolve this mystery, very large detectors are required to probe the low flux of these particles — or to detect the as-yet unobserved flux of UHE neutrinos predicted from their interactions. The‘lunar Askaryan technique' is a method to do both. When energetic particles interact in a dense medium,the Askaryan effect produces intense coherent pulses of radiation in the MHz–GHz range. By using radio telescopes to observe the Moon and look for nanosecond pulses, the entire visible lunar surface(20 million km~2) can be used as a UHE particle detector. A large effective area over a broad bandwidth is the primary telescope requirement for lunar observations, which makes large single-aperture instruments such as the Five-hundred-meter Aperture Spherical radio Telescope(FAST) well-suited to the technique. In this contribution, we describe the lunar Askaryan technique and its unique observational requirements. Estimates of the sensitivity of FAST to both the UHE cosmic ray and neutrino flux are given, and we describe the methods by which lunar observations with FAST, particularly if equipped with a broadband phased-array feed, could detect the flux of UHE cosmic rays.  相似文献   
14.
Mars Global Surveyor (MGS) visible (solarband bolometer) and thermal infrared (IR) spectral limb observations from the Thermal Emission Spectrometer (TES) support quantitative profile retrievals for dust opacity and particle sizes during the 2001 global dust event on Mars. The current analysis considers the behavior of dust lifted to altitudes above 30 km during the course of this storm; in terms of dust vertical mixing, particle sizes, and global distribution. TES global maps of visible (solarband) limb brightness at 60 km altitude indicate a global-scale, seasonally evolving (over 190-240° solar longitudes, LS) longitudinal corridor of vertically extended dust loading (which may be associated with a retrograde propagating, wavenumber 1 Rossby wave). Spherical radiative transfer analysis of selected limb profiles for TES visible and thermal IR radiances provide quantitative vertical profiles of dust opacity, indicating regional conditions of altitude-increasing dust mixing ratios. Observed infrared spectral dependences and visible-to-infrared opacity ratios of dust scattering over 30-60 km altitudes indicate particle sizes characteristic of lower altitudes (cross-section weighted effective radius, ), during conditions of significant dust transport to these altitudes. Conditions of reduced dust loading at 30-60 km altitudes present smaller dust particle sizes . These observations suggest rapid meridional transport at 30-80 km altitudes, with substantial longitudinal variation, of dust lifted to these altitudes over southern hemisphere atmospheric regions characterized by extraordinary (m/s) vertical advection velocities. By LS=230° dust loading above 50 km altitudes decreased markedly at southern latitudes, with a high altitude (60-80 km) haze of fine (likely) water ice particles appearing over 10°S-40°N latitudes.  相似文献   
15.
Observations by the Mars Color Imager (MARCI) on board the Mars Reconnaissance Orbiter (MRO) in two ultraviolet (UV, Bands 6 and 7; 258 nm, and 320 nm, respectively) and one visible (Band 1, 436 nm) channels of the 2007 planet encircling dust storm are combined with those made by the two Mars Exploration Rovers (MERs) to better characterize the single scattering albedo (ω0) of martian dust aerosols. Exploiting the low contrast of the surface in the UV (and blue) as well as the reduced importance of surface reflectance under very dusty conditions, we utilize the sampling of photometric angles by the MARCI cross-track geometry to synthesize an analog of the classical Emergence Phase Function (EPF). This so-called “pseudo-EPF”, used in conjunction with the “ground-truth” measurements provided by the MERs, is able to effectively isolate the effects of the dust ω0. The motivation for this approach is the elimination of a significant portion of the type of uncertainty involved in many previous radiative transfer analyses. Furthermore, we produce a self-consistent set of complex refractive indices (m=n+ik) through our use of an explicit microphysical representation of the aerosol scattering properties. Because of uncertainty in the exact size of the dust particles during the epoch of the observations, we consider two effective particle radii (reff) to cover the range anticipated from the literature: 1.6 and 1.8 μm. The resulting set of model-data comparisons, ω0, and m are presented along with an assessment of potential sources of error and uncertainty. Analysis of the Band 1 results is limited to ω0 as a “proof-of-concept” for our approach through a comparison to contemporaneous CRISM EPF results at 440 nm. The derived ω0 are: assuming , and 0.765, for Bands 6, 7, and 1, respectively; for , for the same band order. For either reff case, the total estimated error is 0.022, 0.019, and 0.010, again for Bands 6, 7, and 1. We briefly discuss our retrievals, including the asymmetry parameter (g) associated with our model phase functions, within the context of previous efforts, with an emphasis on the improved precision of our results compared to those in the literature. We also suggest several applications of our results, including an extension of the dust climatological record using MARCI Band 7 pseudo-EPFs outside of 2007 global dust event. Initial work on this particular application using a sample of 135 pseudo-EPFs near the MERs suggests that optical depth retrievals with a precision in the range 0.2-0.4 may be possible under moderate loading conditions (i.e., τ < 1.5).  相似文献   
16.
As an example of the technique of fingerprint detection of greenhouse climate change, a multivariate signal or fingerprint of the enhanced greenhouse effect is defined using the zonal mean atmospheric temperature change as a function of height and latitude between equilibrium climate model simulations with control and doubled CO2 concentrations. This signal is compared with observed atmospheric temperature variations over the period 1963 to 1988 from radiosonde-based global analyses. There is a significant increase of this greenhouse signal in the observational data over this period.These results must be treated with caution. Upper air data are available for a short period only, possibly too short to be able to resolve any real greenhouse climate change. The greenhouse fingerprint used in this study may not be unique to the enhanced greenhouse effect and may be due to other forcing mechanisms. However, it is shown that the patterns of atmospheric temperature change associated with uniform global increases of sea surface temperature, with El NinoSouthern Oscillation events and with decreases of stratospheric ozone concentrations individually are different from the greenhouse fingerprint used here.  相似文献   
17.
Sub-millimeter 12CO (346 GHz) and 13CO (330 GHz) line absorptions, formed within the mesospheric to lower thermospheric altitude (70–120 km) region of the Venus atmosphere, have been mapped across the nightside disk of Venus during 2001–2009 inferior conjunctions, employing the James Clerk Maxwell Telescope (JCMT). Radiative transfer analysis of these thermal line absorptions supports temperature and CO mixing profile retrievals, as described in a companion paper (Clancy et al., 2012). Here, we consider the analysis of the sharp line absorption cores of these CO spectra in terms of accurate Doppler wind profile measurements at 95–115 km altitudes versus local time (~8 pm–4 am) and latitude (~60N–60S). These Doppler wind measurements support determinations of the nightside zonal and subsolar-to-antisolar (SSAS) circulation components over a variety of timescales. The average behavior fitted from 21 retrieved maps of 12CO Doppler winds (obtained over hourly, daily, weekly, and interannual intervals) indicates stronger average zonal (85 m/s retrograde) versus SSAS (65 m/s) circulation at the 1 μbar pressure (108–110 km altitude) level. However, the absolute and relative magnitudes of these circulation components exhibit extreme variability over daily to weekly timescales. Furthermore, the individual Doppler wind measurements within each nightside mapping observation generally show significant deviations (20–50 m/s, averaged over 5000 km horizontal scales) from the simple zonal/SSAS solution, with distinct local time and latitudinal characters that are also time variable. These large scale residual circulations contribute 30–70% of the observed nightside Doppler winds at any given time, and may be most responsible for global variations in nightside lower thermospheric trace composition and temperatures, as coincidentally retrieved CO abundance and temperature distributions do not correlate with solution retrograde zonal and SSAS winds (see companion paper, Clancy et al., 2012). Limited comparisons of these nightside submillimeter results with dayside infrared Doppler wind measurements suggest distinct dayside versus nightside circulations, in terms of zonal winds in particular. Combined 12CO and 13CO Doppler wind mapping observations obtained since 2004 indicate that the average zonal and SSAS wind components increase by 50–100% between altitudes of 100 and 115 km. If gravity waves originating from the cloud levels are responsible for the extension of zonal winds into the thermosphere (Alexander, M.J. [1992]. Geophys. Res. Lett. 19, 2207–2210), such waves deposit substantial momentum (i.e., break) in the lower nightside thermosphere.  相似文献   
18.
西秦岭凤太矿集区丝毛岭金矿床地质地球化学特征   总被引:1,自引:0,他引:1  
西秦岭凤太矿集区丝毛岭金矿床位于八卦庙造山型金矿床西侧5km左右,是一个新探明的剪切带型金矿。其成矿作用过程可分为早期石英-绢云母-硫化物阶段、中期多金属-硫化物阶段和晚期碳酸盐阶段。对早、中期的石英流体包裹体测试结果表明,丝毛岭金矿床成矿流体以富CO2、中温、低盐度为特征,总体上属于中温低盐度CO2-H2O体系,流体包裹体类型的多样性是流体不混溶性的产物。从早阶段到主成矿阶段成矿流体的温度、压力和盐度均有降低,硫逸度增高,有利于金的沉淀富集。H、O、S、C同位素研究结果,以及与八卦庙金矿床的对比分析表明,二者的成矿流体具有相似性和同源性,都是以深部来源为主的多源流体。由于丝毛岭金矿床产出的层位高于八卦庙金矿床,其成矿环境相对开放。  相似文献   
19.
Mm-wave spectra of HDO in the Venus mesosphere (65-100 km) were obtained over the period March 1998 to June 2004. Each spectrum is a measurement of the hemispheric-average H2O vapor mixing ratio in the Venus mesosphere. Observations were conducted for wide ranges of Venus solar elongations (46° W to 47° E), and fractional disk illuminations (f=0% to 99%), yielding water vapor abundances on 17 dates and over a full range of local solar time (LST) at the sub-Earth point on Venus. Our mesopheric H2O values are more numerous and far more precise than the earliest mm-derived H2O measurements [Encrenaz, Th., Lellouch, E., Paubert, G., Gulkis, S., 1991. First detection of HDO in the atmosphere of Venus at radio wavelengths: An estimate of the H2O vertical distribution. Astron. Astrophys. 246, L63-L66; Encrenaz, Th., Lellouch, E., Cernicharo, J., Paubert, G., Gulkis, S., Spilker, T., 1995. The thermal profile and water abundance in the Venus mesosphere from H2O and HDO millimeter observations. Icarus 117, 162-172], allowing an analysis of variability that was previously impossible. Measured 65-100 km H2O ranged from 0.0±0.06 to 3.5±0.3 ppmv, with significantly different variability than found in previous infrared (lower altitude, cloudtop) studies. Strong global variability on a 1-2 month timescale is clear and unambiguous. A limited number of excellent s/n measurements tentatively indicate the 1-2 month variability manifests most rapidly as change in the lower mesosphere, and more slowly as change in the upper mesosphere. Neither long term (1998-2004) nor diurnal variability in 65-100 km H2O is evident. While six-year and/or diurnal variabilities are not ruled out, they are weaker than the 1-2 month timescale variation. These conclusions are supported by initial (2004) sub-mm measurements.  相似文献   
20.
Buie  M. W.  Millis  R. L.  Wasserman  L. H.  Elliot  J. L.  Kern  S. D.  Clancy  K. B.  Chiang  E. I.  Jordan  A. B.  Meech  K. J.  Wagner  R. M.  Trilling  D. E. 《Earth, Moon, and Planets》2003,92(1-4):113-124
The Deep Ecliptic Survey is a project whose goal is to survey a largearea of the near-ecliptic region to a faint limiting magnitude (R ~24) in search of objects in the outer solar system. We are collectinga large homogeneous data sample from the Kitt Peak Mayall 4-m and CerroTololo Blanco 4-m telescopes with the Mosaic prime-focus CCD cameras.Our goal is to collect a sample of 500 objects with good orbits to furtherour understanding of the dynamical structure of the outer solar system.This survey has been in progress since 1998 and is responsible for 272designated discoveries as of March 2003. We summarize our techniques,highlight recent results, and describe publically available resources.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号