首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8634篇
  免费   338篇
  国内免费   129篇
测绘学   166篇
大气科学   734篇
地球物理   2019篇
地质学   3042篇
海洋学   815篇
天文学   1248篇
综合类   37篇
自然地理   1040篇
  2021年   113篇
  2020年   155篇
  2019年   158篇
  2018年   203篇
  2017年   198篇
  2016年   243篇
  2015年   202篇
  2014年   264篇
  2013年   485篇
  2012年   286篇
  2011年   416篇
  2010年   380篇
  2009年   476篇
  2008年   400篇
  2007年   412篇
  2006年   346篇
  2005年   296篇
  2004年   283篇
  2003年   301篇
  2002年   243篇
  2001年   203篇
  2000年   223篇
  1999年   165篇
  1998年   150篇
  1997年   132篇
  1996年   144篇
  1995年   133篇
  1994年   127篇
  1993年   102篇
  1992年   101篇
  1991年   71篇
  1990年   97篇
  1989年   78篇
  1988年   84篇
  1987年   96篇
  1986年   85篇
  1985年   112篇
  1984年   134篇
  1983年   123篇
  1982年   105篇
  1981年   81篇
  1980年   58篇
  1979年   71篇
  1978年   69篇
  1977年   64篇
  1976年   61篇
  1975年   69篇
  1974年   57篇
  1973年   69篇
  1972年   34篇
排序方式: 共有9101条查询结果,搜索用时 15 毫秒
971.
This study presents the first consolidation of palaeoclimate proxy records from multiple archives to develop statistical rainfall reconstructions for southern Africa covering the last two centuries. State-of-the-art ensemble reconstructions reveal multi-decadal rainfall variability in the summer and winter rainfall zones. A decrease in precipitation amount over time is identified in the summer rainfall zone. No significant change in precipitation amount occurred in the winter rainfall zone, but rainfall variability has increased over time. Generally synchronous rainfall fluctuations between the two zones are identified on decadal scales, with common wet (dry) periods reconstructed around 1890 (1930). A strong relationship between seasonal rainfall and sea surface temperatures (SSTs) in the surrounding oceans is confirmed. Coherence among decadal-scale fluctuations of southern African rainfall, regional SST, SSTs in the Pacific Ocean and rainfall in south-eastern Australia suggest SST-rainfall teleconnections across the southern hemisphere. Temporal breakdowns of the SST-rainfall relationship in the southern African regions and the connection between the two rainfall zones are observed, for example during the 1950s. Our results confirm the complex interplay between large-scale teleconnections, regional SSTs and local effects in modulating multi-decadal southern African rainfall variability over long timescales.  相似文献   
972.
A monthly index based on the persistence of the westerly winds over the English Chanel is constructed for 1685–2008 using daily data from ships’ logbooks and comprehensive marine meteorological datasets. The so-called Westerly Index (WI) provides the longest instrumental record of atmospheric circulation currently available. Anomalous WI values are associated with spatially coherent climatic signals in temperature and precipitation over large areas of Europe, which are stronger for precipitation than for temperature and in winter and summer than in transitional seasons. Overall, the WI series accord with the known European climatic history, and reveal that the frequency of the westerlies in the eastern Atlantic during the twentieth century and the Late Maunder Minimum was not exceptional in the context of the last three centuries. It is shown that the WI provides additional and complementary information to the North Atlantic Oscillation (NAO) indices. The analysis of WI series during the industrial era indicates an overall good agreement with the winter and high-summer NAO, with the exception of several multidecadal periods of weakened correlation. These decoupled periods between the frequency and the intensity of the zonal flow are interpreted on the basis of several sources of non-stationarity affecting the centres of the variability of the North Atlantic and their teleconnections. Comparisons with NAO reconstructions and long instrumental indices extending back to the seventeenth century suggest that similar situations have occurred in the past, which call for caution when reconstructing the past atmospheric circulation from climatic proxies. The robustness and extension of its climatic signal, the length of the series and its instrumental nature make the WI an excellent benchmark for proxy calibration in Europe and Greenland.  相似文献   
973.
The predictability of the Arctic sea ice is investigated at the interannual time scale using decadal experiments performed within the framework of the fifth phase of the Coupled Model Intercomparison Project with the CNRM-CM5.1 coupled atmosphere–ocean global climate model. The predictability of summer Arctic sea ice extent is found to be weak and not to exceed 2 years. In contrast, robust prognostic potential predictability (PPP) up to several years is found for winter sea ice extent and volume. This predictability is regionally contrasted. The marginal seas in the Atlantic sector and the central Arctic show the highest potential predictability, while the marginal seas in the Pacific sector are barely predictable. The PPP is shown to decrease drastically in the more recent period. Regarding sea ice extent, this decrease is explained by a strong reduction of its natural variability in the Greenland–Iceland–Norwegian Seas due to the quasi-disappearance of the marginal ice zone in the center of the Greenland Sea. In contrast, the decrease of predictability of sea ice volume arises from the combined effect of a reduction of its natural variability and an increase in its chaotic nature. The latter is attributed to a thinning of sea ice cover over the whole Arctic, making it more sensitive to atmospheric fluctuations. In contrast to the PPP assessment, the prediction skill as measured by the anomaly correlation coefficient is found to be mostly due to external forcing. Yet, in agreement with the PPP assessment, a weak added value of the initialization is found in the Atlantic sector. Nevertheless, the trend-independent component of this skill is not statistically significant beyond the forecast range of 3 months. These contrasted findings regarding potential predictability and prediction skill arising from the initialization suggest that substantial improvements can be made in order to enhance the prediction skill.  相似文献   
974.
We describe results from a 57-member ensemble of transient climate change simulations, featuring simultaneous perturbations to 54 parameters in the atmosphere, ocean, sulphur cycle and terrestrial ecosystem components of an earth system model (ESM). These emissions-driven simulations are compared against the CMIP3 multi-model ensemble of physical climate system models, used extensively to inform previous assessments of regional climate change, and also against emissions-driven simulations from ESMs contributed to the CMIP5 archive. Members of our earth system perturbed parameter ensemble (ESPPE) are competitive with CMIP3 and CMIP5 models in their simulations of historical climate. In particular, they perform reasonably well in comparison with HadGEM2-ES, a more sophisticated and expensive earth system model contributed to CMIP5. The ESPPE therefore provides a computationally cost-effective tool to explore interactions between earth system processes. In response to a non-intervention emissions scenario, the ESPPE simulates distributions of future regional temperature change characterised by wide ranges, and warm shifts, compared to those of CMIP3 models. These differences partly reflect the uncertain influence of global carbon cycle feedbacks in the ESPPE. In addition, the regional effects of interactions between different earth system feedbacks, particularly involving physical and ecosystem processes, shift and widen the ESPPE spread in normalised patterns of surface temperature and precipitation change in many regions. Significant differences from CMIP3 also arise from the use of parametric perturbations (rather than a multimodel ensemble) to represent model uncertainties, and this is also the case when ESPPE results are compared against parallel emissions-driven simulations from CMIP5 ESMs. When driven by an aggressive mitigation scenario, the ESPPE and HadGEM2-ES reveal significant but uncertain impacts in limiting temperature increases during the second half of the twenty-first century. Emissions-driven simulations create scope for development of errors in properties that were previously prescribed in coupled ocean–atmosphere models, such as historical CO2 concentrations and vegetation distributions. In this context, historical intra-ensemble variations in the airborne fraction of CO2 emissions, and in summer soil moisture in northern hemisphere continental regions, are shown to be potentially useful constraints, subject to uncertainties in the relevant observations. Our results suggest that future climate-related risks can be assessed more comprehensively by updating projection methodologies to support formal combination of emissions-driven perturbed parameter and multi-model earth system model simulations with suitable observational constraints. This would provide scenarios underpinned by a more complete representation of the chain of uncertainties from anthropogenic emissions to future climate outcomes.  相似文献   
975.
Earth system models (ESMs) provide high resolution simulations of variables such as sea surface temperature (SST) that are often used in off-line biological impact models. Coral reef modellers have used such model outputs extensively to project both regional and global changes to coral growth and bleaching frequency. We assess model skill at capturing sub-regional climatologies and patterns of historical warming. This study uses an established wavelet-based spatial comparison technique to assess the skill of the coupled model intercomparison project phase 5 models to capture spatial SST patterns in coral regions. We show that models typically have medium to high skill at capturing climatological spatial patterns of SSTs within key coral regions, with model skill typically improving at larger spatial scales (≥4°). However models have much lower skill at modelling historical warming patters and are shown to often perform no better than chance at regional scales (e.g. Southeast Asian) and worse than chance at finer scales (<8°). Our findings suggest that output from current generation ESMs is not yet suitable for making sub-regional projections of change in coral bleaching frequency and other marine processes linked to SST warming.  相似文献   
976.
The Khut copper skarn deposit is located at about 50 km northwest of Taft City in Yazd province in the middle part of the Urumieh‐Dokhtar magmatic arc. Intrusion of granitoid of Oligocene–Miocene age into carbonate rocks of the Triassic Nayband Formation led to the formation of marble and a calcic skarn. The marble contains high grade Cu mineralization that occurs mainly as open space filling and replacement. Cu‐rich sulfide samples from the mineralized marble are also anomalous in Au, Zn, and Pb. In contrast, the calcic skarn is only weakly anomalous in Cu and W. The calcic skarn is divided into garnet skarn and garnet–pyroxene skarn zones. Paragenetic relationships and microthermometric data from fluid inclusions in garnet and calcite indicate that the compositional evolution of skarn minerals occurred in three main stages as follows. (i) The early prograde stage, which is characterized by Mg‐rich hedenbergite (Hd53.7Di42.3–Hd86.1Di9.5) with Al‐bearing andradite (69.8–99.5 mol% andradite). The temperature in the early prograde skarn varies from 400 to 500°C at 500 bar. (ii) The late prograde stage is manifested by almost pure andradite (96.2–98.4 mol% andradite). Based on the fluid inclusion data from garnet, fluid temperature and salinity in this stage is estimated to vary from 267 to 361°C and from 10.1 to 21.1 wt% NaCl equivalent, respectively. Pyrrhotite precipitation started during this stage. (iii) The retrograde stage occurs in an exoskarn, which consists of an assemblage of ferro‐actinolite, quartz, calcite, epidote, chlorite, sphalerite, pyrite, and chalcopyrite that partially replaces earlier mineral assemblages under hydrostatic conditions during fracturing of the early skarn. Fluids in calcite yielded lower temperatures (T < 260°C) and fluid salinity declined to ~8 wt% NaCl equivalent. The last stage mineralization in the deposit is supergene weathering/alteration represented by the formation of iron hydroxide, Cu‐carbonate, clay minerals, and calcite. Sulfur isotope data of chalcopyrite (δ34S of +1.4 to +5.2‰) show an igneous sulfur source. Mineralogy and mineral compositions of the prograde assemblage of the Khut skarn are consistent with deposition under intermediately oxidized and slightly lower fS2 conditions at shallow crustal levels compared with those of other typical Fe‐bearing Cu–Au skarn systems.  相似文献   
977.
Density stratification in saline and hypersaline water bodies from throughout the world can have large impacts on the internal cycling and loading of salinity, nutrients, and trace elements. High temporal resolution hydroacoustic and physical/chemical data were collected at two sites in Great Salt Lake (GSL), a saline lake in the western USA, to understand how density stratification may influence salinity and mercury (Hg) distributions. The first study site was in a causeway breach where saline water from GSL exchanges with less saline water from a flow restricted bay. Near-surface-specific conductance values measured in water at the breach displayed a good relationship with both flow and wind direction. No diurnal variations in the concentration of dissolved (<0.45 μm) methylmercury (MeHg) were observed during the 24-h sampling period; however, the highest proportion of particulate Hgtotal and MeHg loadings was observed during periods of elevated salinity. The second study site was located on the bottom of GSL where movement of a high-salinity water layer, referred to as the deep brine layer (DBL), is restricted to a naturally occurring 1.5-km-wide “spillway” structure. During selected time periods in April/May, 2012, wind-induced flow reversals in a railroad causeway breach, separating Gunnison and Gilbert Bays, were coupled with high-velocity flow pulses (up to 55 cm/s) in the DBL at the spillway site. These flow pulses were likely driven by a pressure response of highly saline water from Gunnison Bay flowing into the north basin of Gilbert Bay. Short-term flow reversal events measured at the railroad causeway breach have the ability to move measurable amounts of salt and Hg from Gunnison Bay into the DBL. Future disturbance to the steady state conditions currently imposed by the railroad causeway infrastructure could result in changes to the existing chemical balance between Gunnison and Gilbert Bays. Monitoring instruments were installed at six additional sites in the DBL during October 2012 to assess impacts from any future modifications to the railroad causeway.  相似文献   
978.
In March 2012, during the rainy season in the Altiplano plateau, a >100-year return period rainfall event affected the deeply incised valleys of the Precordillera of the Tarapacá Region, northern Chile. This extreme event in a very arid region triggered a number of debris and mud flows that caused severe damage and destruction in several small villages along the Camiña and Tarapacá valleys. The highly vulnerable location of the villages on top of alluvial fans due to socioeconomic and cultural reasons is a key factor to explain the level of destruction in most villages. In this paper, this unusual, remarkable landslide event is described, and the hazard faced by these settlements for future rainfall episodes and possible mitigation measures are discussed.  相似文献   
979.
Barbados is a small Caribbean island located on the crest of an accretionary prism about 125 km east of the Lesser Antilles volcanic island arc. The oldest strata, Eocene sandstones and shales, are overlain by Oligocene–Miocene chalks and marls, in turn overlain by Pleistocene reef and lagoonal limestones that cover about 85 % of the island. The Eocene sediments, which crop out in the Scotland District of Barbados, are prone to soil creep and landslides covering tens to hundreds of hectares. The largest historic landslide, the “Boscobel Landslip,” occurred on 01 October 1901. We used nineteenth-century and more modern topographic and geologic maps, air photographs, and various archival and petrophysical data, to supplement reconnaissance of the landslide in the field. We identified about ten million cubic meters of the displaced material of the landslide, as well as the meteorological and geological conditions that contributed to the Boscobel Landslip. Similar landslides would pose a presently unquantified hazard to inhabitation and future development in the Scotland District.  相似文献   
980.
The literature suggests that, in the tropics, mangroves are typically pollinated by a range of generalist pollinators, whereas in temperate populations, pollination biology is largely unstudied. We predicted that, for the mangrove Avicennia marina in temperate southeast Australia, pollinator diversity would be low and its pollination system modified by the exotic honeybee Apis mellifera. Multiyear surveys and experiments were used to test these hypotheses by determining the identity and frequency of flower visitors, quantifying pollinator foraging behaviour, determining the species composition of pollen loads, and demonstrating pollen removal and deposition. We identified 38 species that visited flowers, but only A. mellifera was a significant pollinator. It was the only species to carry large amounts of pollen and forage in a manner permitting transfer of pollen to stigmas. Moreover, A. mellifera was the numerically dominant flower visitor and was effective in both pollen removal and deposition. This study demonstrates the importance of distinguishing flower visitors from pollinators and emphasises the surprisingly widespread influence of the exotic A. mellifera. Finally, our study and a worldwide review of the literature on the pollination of mangroves reveal that the pollination biology of other mangrove systems requires similar scrutiny.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号