首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   237篇
  免费   19篇
  国内免费   3篇
测绘学   4篇
大气科学   28篇
地球物理   50篇
地质学   128篇
海洋学   11篇
天文学   24篇
自然地理   14篇
  2023年   3篇
  2022年   2篇
  2021年   4篇
  2020年   7篇
  2019年   13篇
  2018年   6篇
  2017年   4篇
  2016年   15篇
  2015年   19篇
  2014年   14篇
  2013年   12篇
  2012年   10篇
  2011年   13篇
  2010年   18篇
  2009年   19篇
  2008年   18篇
  2007年   7篇
  2006年   11篇
  2005年   7篇
  2004年   8篇
  2003年   7篇
  2002年   6篇
  2001年   4篇
  2000年   3篇
  1999年   4篇
  1998年   3篇
  1997年   2篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1983年   2篇
  1979年   1篇
  1978年   2篇
  1974年   1篇
  1969年   1篇
排序方式: 共有259条查询结果,搜索用时 734 毫秒
211.
Based on a previous study for temperature, a new method for the calculation of non-stationary return levels for extreme rainfall is described and applied to Extremadura, a region of southwestern Spain, using the peaks-over-threshold approach. Both all-days and rainy-days-only datasets were considered and the 20-year return levels expected in 2020 were estimated taking different trends into account: first, for all days, considering a time-dependent threshold and the trend in the scale parameter of the generalized Pareto distribution; and second, for rainy days only, considering how the mean, variance, and number of rainy days evolve. Generally, the changes in mean, variance and number of rainy days can explain the observed trends in extremes, and their extrapolation gives more robust estimations. The results point to a decrease of future return levels in 2020 for spring and winter, but an increase for autumn.  相似文献   
212.
The Mediterranean domain is characterized by a specific climate resulting from the close interplay between atmospheric and marine processes and strongly differentiated regional topographies. Corsica Island, a mountainous area located in the western part of the Mediterranean Sea is particularly suitable to quantify regional denudation rates in the framework of a source‐to‐sink approach. Indeed, fluvial sedimentation in East‐Corsica margin is almost exclusively limited to its alluvial plain and offshore domain and its basement is mainly constituted of quartz‐rich crystalline rocks allowing cosmogenic nuclide 10Be measurements. In this paper, Holocene denudation rates of catchments from the eastern part of the island of Corsica are quantified relying on in situ produced 10Be concentrations in stream sediments and interpreted in an approach including quantitative geomorphology, rock strength measurement (with a Schmidt Hammer) and vegetation cover distribution. Calculated denudation rates range from 15 to 95 mm ka‐1. When compared with rates from similar geomorphic domains experiencing a different climate setting, such as the foreland of the northern European Alps, they appear quite low and temporally stable. At the first order, they better correlate with rock strength and vegetation cover than with morphometric indexes. Spatial distribution of the vegetation is controlled by morpho‐climatic parameters including sun exposure and the direction of the main wet wind, so‐called ‘Libecciu’. This distribution, as well as the basement rock strength seems to play a significant role in the denudation distribution. We thus suggest that the landscape reached a geomorphic steady‐state due to the specific Mediterranean climate and that Holocene denudation rates are mainly sustained by weathering processes, through the amount of regolith formation, rather than being transport‐limited. Al/K measurements used as a proxy to infer present‐day catchment‐wide chemical weathering patterns might support this assumption. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
213.
A general thermo-hydro-mechanical framework for the modelling of internal erosion is proposed based on the theory of mixtures applied to two-phase porous media. The erodible soil is partitioned in two phases: one solid phase and one fluid phase. The solid phase is composed of nonerodible grains and erodible particles. The fluid phase is composed of water and fluidized particles. Within the fluid phase, species diffuse. Across phases, species transfer. The modelling of internal erosion is contributed directly by mass transfer from the solid phase towards the fluid phase. The constitutive relations governing the thermomechanical behaviour, generalised diffusion, and transfer are structured by the dissipation inequality. The particular case of soil suffusion is investigated with a focus on constitutive laws. A new constitutive law for suffusion is constructed based on thermodynamic conditions and experimental investigations. This erosion law is linearly related to the power of seepage flow and to the erosion resistance index. Owing to its simplicity, this law tackles the overall trend of the suffusion process and permits the formulation of an analytical solution. This new model is then applied to simulate laboratory experiments, by both analytical and numerical methods. The comparison shows that the newly developed model, which is theoretically consistent, can reproduce correctly the overall trend of the cumulated eroded mass when the permeability evolution is small. In addition, the results are provided for four different materials, two different specimen sizes, and various hydraulic loading paths to demonstrate the applicability of the new proposed law.  相似文献   
214.
The margin of the Foz do Amazonas Basin saw a shift from predominantly carbonate to siliciclastic sedimentation in the early late Miocene. By this time, the Amazon shelf had also been incised by a canyon that allowed direct influx of sediment to the basin floor, thus confirming that the palaeo‐Amazon fan had already initiated by that time (9.5–8.3 Ma). Above this interval, during a prolonged lowstand, Messinian third‐order sequences are preserved only in the incised‐valley fills of the canyon with no equivalent strata on the shelf. Third‐ and fourth‐order sequences younger than Messinian are preserved on the shelf after sea‐level rise above the shelf by the early Pliocene. Sequences younger than 3.8 Ma often show fourth‐order cyclicity with an average duration of 400 ka (larger scale eccentricity cycles) often preserved in high‐sedimentation‐rate areas of river deltas. Mass wasting and transportation of slope sediments to the basin began to play an important role in sediment dispersal at least as far back as the mid‐Pliocene, after rapid progradation had produced steeper slopes more prone to failure.  相似文献   
215.
Equatorial Pacific sea surface temperature variations interact with processes of atmospheric circulation, creating conditions for the occurrence of El Niño–Southern Oscillation (ENSO). ENSO events represent the most important interannual phenomena affecting climate patterns worldwide and causing significant socio‐economic impacts. In the Brazilian territory, ENSO leads to an increase in drought episodes in the north‐eastern region and an increase in precipitation in the southern region, whereas the effects over the south‐east region are yet not well understood. The main goal of this study is to compare variations of isotopic composition in precipitation across the south‐east portion of the Brazilian territory during two very strong ENSO events: 1997–1998 (ENSO 1) and 2014–2016 (ENSO 2). Daily isotopic records, available from the Global Network of Isotopes in Precipitation database for ENSO 1, and samples collected during ENSO 2 were used to compare the influence of both events on the isotopic composition of precipitation. Seasonal variations indicated more depleted precipitation during the wet seasons (δ18O = ?5.4 ± 4.0‰) and enriched precipitation during the dry seasons (δ18O = ?2.8 ± 2.3‰). Observed rainfall variations were associated with atmospheric large‐scale processes and moisture transport from the Amazon region, whereas extreme values (enriched or depleted) appear to be associated with particular convective and stratiform precipitation events. Overall, more depleted isotopic composition of precipitation (δ18O = ?4.60‰) and higher d‐excess (up to +15‰) were observed during the dry season of ENSO 1 when compared with ENSO 2 dry season (δ18O‰ = ?2.80‰, d‐excess lower than +14‰). The latter is explained by greater atmospheric moisture content, particularly associated with recycling of transpiration fluxes from the Amazon region, during dry season of ENSO 1. No significant differences for δ18O and δ2H were observed during the wet season; however, d‐excess from ENSO 2 was greater than ENSO 1, due to the slightly greater atmospheric moisture content and very strong upward motion observed. Our findings highlight the opportunity that environmental isotopes offer towards understanding hydrometeorological processes, particularly, the evolution of extreme climatic events of global resonance such as ENSO.  相似文献   
216.
Low pressure-high temperature (LPHT) metamorphism, with geothermal gradients in the order of 50–100°C/km, is a common feature of the late evolution of collisional orogens. These abnormal thermal conditions may be the results of complex interactions between magmatism, metamorphism and deformation. The Agly massif, in the French Pyrenees, preserves the metamorphic footprints of the late Variscan thermal structure of an almost continuous section from the upper and middle continental crust. The upper crust is characterized by a very high geothermal gradient of ~55°C/km, evolving from greenschist to amphibolite facies, while the middle crust, exposed in a gneissic core, exhibits granulite facies conditions with a near isothermal geothermal gradient (<8°C/km) between 740 and 790°C. The abnormal and discontinuous crustal geothermal gradient, dated at c. 305 Ma on syn-granulitic monazite by LA-ICP-MS, is interpreted to be the result of magmatic intrusions at different structural levels in the crust: the Ansignan charnockite (c. 305 Ma) in the deepest part of the gneissic core, the Tournefort granodiorite (c. 308 Ma) at the interface between the gneissic core and the upper crust and the Saint-Arnac granite (c. 304 Ma) in the upper section of the massif. The heat input from these magmas combined with the thermal buffering effect of the biotite dehydration-melting reaction resulted in the near isothermal geothermal gradient in the gneissic core (melt-enhanced geotherm). The higher geothermal gradient (>50°C/km) in the upper crust is only due to conduction between the hot middle crust and the Earth's surface. The estimated maximum finite pressure range suggests that ~10 to 12 km of crust are exposed in the Agly massif while the present-day thickness does not exceed 5–6 km. This pressure/depth gap is consistent with the presence of several normal mylonitic shear zones that could have contributed to the subtraction of ~5 km of the rock pile. Monazite U–Th–Pb ages carried out on monazite overgrowths from a highly mylonitized sample suggest that this vertical thinning of the massif occurred at c. 296–300 Ma. This later Variscan extension might have slightly perturbed the 305 Ma geothermal gradient, resulting in an apparent higher conductive geothermal gradient in the upper crust. Although the Agly massif has been affected by Cretaceous extension and Eocene Alpine compression, we suggest that most of the present-day thickness of the column rock was acquired by the end of the Palaeozoic.  相似文献   
217.
The 8.2 ka bp cooling event is assumed to be the most clearly marked abrupt climate event in the Holocene at northern mid‐ to high latitudes. In this study, we simulate the vegetation responses to the 8.2 ka bp climate change event over Europe and Northern Africa. Our results show that all dominant plant functional types (PFTs) over Europe and North Africa respond to these climate changes, but the magnitude, timing and impact factor of their responses are different. Compared with pollen‐based vegetation reconstructions, our simulation generally captures the main features of vegetation responses to the 8.2 ka bp event. Interestingly, in Western Europe, the simulated vegetation after perturbation is different from its initial state, which is consistent with two high‐resolution pollen records. This different vegetation composition indicates the long‐lasting impact of abrupt climate change on vegetation through eco‐physiological and ecosystem demographic processes, such as plant competition. Moreover, our simulations suggest a latitudinal gradient in the magnitude of the event, with more pronounced vegetation responses to the severe cooling in the north and weaker responses to less severe cooling in the south. This effect is not seen in pollen records. © 2019 The Authors. Journal of Quaternary Science Published by John Wiley & Sons, Ltd.  相似文献   
218.
Solar UV radiation is a major source of energy for chemical evolution of organic materials in the Solar System. Therefore studies on the photostability of organic compounds in extraterrestrial environments are of prime importance for the understanding of the extraterrestrial origin of organic materials on Earth. A series of organic samples have been photolysed in Earth orbit during the ESA BIOPAN 6 mission (14-26/09/2007). Their photochemical lifetime has been measured and compared to results recorded in the laboratory using a lamp that simulates the solar radiation in the VUV domain. The half-lives at a distance of 1 AU from the Sun have been measured for glycine, xanthine, hypoxanthine, adenine, guanine, urea, carbon suboxide polymer ((C3O2)n) and HCN polymer. They range from a few days to a lower limit of a few tens of days for the most photoresistant (e.g. adenine, guanine, hypoxanthine). Lifetimes measured in terrestrial orbit are very different from those derived with laboratory experiments. These measurements confirm that it is difficult to simulate the solar spectrum below 200 nm in the laboratory. Results are discussed and highlight the necessity to conduct experiments in orbit, and for longer duration. It also appears that the laboratory measurements made in VUV must be extrapolated very cautiously to the different environments they are supposed to simulate.  相似文献   
219.
We report on a comprehensive analysis of the kilohertz (≥300 Hz) quasi-periodic oscillations (kHz QPOs) detected from the neutron star low-mass X-ray binary 4U 0614+09 with the Rossi X-ray Timing Explorer. With a much larger data set than previously analysed (all archival data from 1996 February up to 2007 October), we first investigate the reality of the 1330 Hz QPO reported by van-Straaten et al. This QPO would be of particular interest since it has the highest frequency reported for any source. A thorough analysis of the same observation fails to confirm the detection. On the other hand, over our extended data set, the highest QPO frequency we measure for the upper kHz QPO is at ∼1224 Hz; a value which is fully consistent with the maximum values observed in similar systems. Secondly, we demonstrate that the frequency dependence of the quality factor  ( Q =ν/Δν)  and amplitude of the lower and upper kHz QPOs follow the systematic trends seen in similar systems. In particular, 4U 0614+09 shows a drop of the quality factor of the lower kHz QPO above ∼700 Hz. If this is due to an approach to the innermost stable circular orbit, it implies a neutron star mass of  ∼1.9 M  . Finally, when analysing the data over fixed durations, we have found a gap in the frequency distribution of the upper QPO, associated with a local minimum of its amplitude. A similar gap is not present in the distribution of the lower QPO frequencies, suggesting some cautions when interpreting frequency ratio distributions, based on the occurrence of the lower QPO only.  相似文献   
220.
The vertical distribution of reduced sulfur species (RSS including H2S/HS, S0, electroactive FeS) and dissolved Fe(II) was studied in the anoxic water column of meromictic Lake Pavin. Sulfide concentrations were determined by two different analytical techniques, i.e. spectophotometry (methylene blue technique) and voltammetry (HMDE electrode). Total sulfide concentrations determined with methylene blue method (∑H2SMBRS) were in the range from 0.6 µM to 16.7 µM and were substantially higher than total reduced sulfur species (RSSV) concentrations determined by voltammetry, which ranged from 0.1 to 5.6 μM. The observed difference in the sulfide concentrations between the two methods can be assigned to the presence of FeS colloidal species.Dissolved Fe was high (> 1000 µM), whereas dissolved Mn was only 25 µM, in the anoxic water column. This indicates that Fe is the dominant metal involved in sulfur redox cycling and precipitation. Consequently, in the anoxic deep layer of Lake Pavin, “free” sulfide, H2S/HS, was low; and about 80% of total sulfide detected was in the electroactive FeS colloidal form. IAP calculations showed that the Lake Pavin water column is saturated with respect to FeSam phase. The upper part of monimolimnion layer is characterized by higher concentrations of S(0) (up to 3.4 µM) in comparison to the bottom of the lake. This behavior is probably influenced by sulfide oxidation with Fe(III) oxyhydroxide species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号