首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   215篇
  免费   3篇
  国内免费   1篇
测绘学   1篇
大气科学   29篇
地球物理   20篇
地质学   67篇
海洋学   19篇
天文学   70篇
自然地理   13篇
  2020年   2篇
  2018年   2篇
  2017年   3篇
  2016年   3篇
  2015年   2篇
  2014年   2篇
  2013年   9篇
  2012年   6篇
  2011年   11篇
  2010年   13篇
  2009年   10篇
  2008年   7篇
  2007年   4篇
  2006年   10篇
  2005年   3篇
  2004年   8篇
  2003年   15篇
  2002年   2篇
  2001年   8篇
  2000年   4篇
  1999年   5篇
  1998年   2篇
  1997年   8篇
  1995年   3篇
  1993年   2篇
  1991年   3篇
  1990年   2篇
  1989年   6篇
  1988年   3篇
  1987年   2篇
  1986年   8篇
  1985年   3篇
  1984年   3篇
  1983年   3篇
  1982年   5篇
  1977年   4篇
  1975年   1篇
  1970年   3篇
  1967年   2篇
  1964年   1篇
  1962年   1篇
  1959年   1篇
  1958年   1篇
  1955年   1篇
  1951年   1篇
  1914年   2篇
  1913年   2篇
  1912年   4篇
  1911年   1篇
  1910年   1篇
排序方式: 共有219条查询结果,搜索用时 15 毫秒
141.
Wellhead temperature and pressure are critical parameters of a geothermal well. Their prediction requires knowledge of the geofluid properties and detailed thermal modelling of the well and formation. High salinity and gas content complicate the task. This article presents a comprehensive thermal–hydraulic wellbore model, which is parameterized and validated with data from the Gross Schoenebeck site, and used for a long-term prognosis. Geofluid properties are calculated based on the specific gas and salt contents by determining the vapour–liquid equilibrium.  相似文献   
142.
143.
Abstract– Maribo is a new Danish CM chondrite, which fell on January 17, 2009, at 19:08:28 CET. The fall was observed by many eye witnesses and recorded by a surveillance camera, an all sky camera, a few seismic stations, and by meteor radar observatories in Germany. A single fragment of Maribo with a dry weight of 25.8 g was found on March 4, 2009. The coarse‐grained components in Maribo include chondrules, fine‐grained olivine aggregates, large isolated lithic clasts, metals, and mineral fragments (often olivine), and rare Ca,Al‐rich inclusions. The components are typically rimmed by fine‐grained dust mantles. The matrix includes abundant dust rimmed fragments of tochilinite with a layered, fishbone‐like texture, tochilinite–cronstedtite intergrowths, sulfides, metals, and carbonates often intergrown with tochilinite. The oxygen isotopic composition: (δ17O = ?1.27‰; δ18O = 4.96‰; Δ17O = ?3.85‰) plots at the edge of the CM field, close to the CCAM line. The very low Δ17O and the presence of unaltered components suggest that Maribo is among the least altered CM chondrites. The bulk chemistry of Maribo is typical of CM chondrites. Trapped noble gases are similar in abundance and isotopic composition to other CM chondrites, stepwise heating data indicating the presence of gas components hosted by presolar diamond and silicon carbide. The organics in Maribo include components also seen in Murchison as well as nitrogen‐rich components unique to Maribo.  相似文献   
144.
Abstract— Our studies of the silicate-bearing inclusions in the IIICD iron meteorites Maltahöhe, Carlton and Dayton suggest that their mineralogy and mineral compositions are related to the composition of the metal in the host meteorites. An inclusion in the low-Ni Maltahöhe is similar in mineralogy to those in IAB irons, which contain olivine, pyroxene, plagioclase, graphite and troilite. With increasing Ni concentration of the metal, silicate inclusions become poorer in graphite, richer in phosphates, and the phosphate and silicate assemblages become more complex. Dayton contains pyroxene, plagioclase, SiO2, brianite, panethite and whitlockite, without graphite. In addition, mafic silicates become more FeO-rich with increasing Ni concentration of the hosts. In contrast, silicates in IAB irons show no such correlation with host Ni concentration, nor do they have the complex mineral assemblages of Dayton. These trends in inclusion composition and mineralogy in IIICD iron meteorites have been established by reactions between the S-rich metallic magma and the silicates, but the physical setting is uncertain. Of the two processes invoked by other authors to account for groups IAB and IIICD, fractional crystallization of S-rich cores and impact generation of melt pools, we prefer core crystallization. However, the absence of relationships between silicate inclusion mineralogy and metal compositions among IAB irons analogous to those that we have discovered in IIICD irons suggests that the IAB and IIICD cores/metallic magmas evolved in rather different ways. We suggest that the solidification of the IIICD core may have been very complex, involving fractional crystallization, nucleation effects and, possibly, liquid immiscibility.  相似文献   
145.
Abstract— Asteroid differentiation was driven by a complex array of magmatic processes. This paper summarizes theoretical and somewhat speculative research on the physics of these processes. Partial melts in asteroids migrate rapidly, taking < 106 years to reach surface regions. On relatively small (<100 km) asteroids with sufficient volatiles in partial melts (<3000 ppm), explosive volcanism accelerated melts to greater than escape velocity, explaining the apparent lack of basaltic components on the parent asteroids of some differentiated meteorites. Partial melting products include the melts (some eucrites, angrites), residues (lodranites, ureilites), and unfractionated residues (acapulcoites). The high liquidus temperatures of magmatic iron meteorites, the existence of pallasites with only olivine, and the fact that enstatite achondrites formed from ultramafic magmas argue for the existence of magma oceans on some asteroids. Asteroidal magma oceans would have been turbulently convective. This would have prevented crystals nucleated at the upper cooling surface (the only place for crystal nucleation in a low-pressure body) from settling until the magma became choked with crystals. After turbulent convection slowed, crystals and magma would have segregated, leaving a body stratified from center to surface as follows: a metallic core, a small pallasite zone, a dunite region, a feldspathic pyroxenite, and basaltic intrusions and lava flows (if the basaltic components had not been lost by explosive volcanism). The pallasite and dunite zones probably formed from coarse (0.5–1 cm) residual olivine left after formation of the magma ocean at >50% partial melting of the silicate assemblage. Iron cores crystallized dendritically from the outside to the inside. The rapid melt migration rate of silicate melts suggests that 26Al could not be responsible for forming asteroidal magma oceans because it would leave the interior before a sufficient amount of melting occurred. Other heat sources are more likely candidates. Our analysis suggests that if Earth-forming planetesimals had differentiated they were either small (<100 km) and poor in volatiles (<1000 ppm) or they were rich in volatiles and large enough (>300 km) to retain the products of pyroclastic eruptions; if these conditions were not met, Earth would not have a basaltic component.  相似文献   
146.
We use the global mercury model published by Bergan et al. (1999) to evaluate the potential role of ozone and the hydroxyl radical as gas phase oxidants for the oxidation of elemental mercury in the atmosphere. The magnitude of natural and man-made mercury emissions are taken from recent literature estimates. We consider only two mercury reservoirs, elemental mercury, Hg0, and the more soluble divalent form, HgII. Wet and dry deposition of HgII is explicitly treated.Applying monthly mean fields of ozone for the oxidation of gas phase Hg0 and using the reaction rate by Hall (1995) yields a global transformation of Hg0 to HgII which is too slow to keep the simulated concentration of Hg0 near observed values. This shows that there must be additional important removal processes for Hg0 or that the reaction rate proposed by Hall (1995) is too slow. A simulation in which the oxidation rate was artificially increased, so that the global turn-over time of Hg0 is one year and the simulated average concentration of Hg0 realistic, produces latitudinal and seasonal variations in Hg0 that do not support the hypothesis that gas phase reaction with O3 is the major oxidation process for Hg0.Recent studies indicate that OH may be an important gas phase oxidant for Hg0 (Sommar et al., 2001). Using OH as the sole oxidantand applying the oxidation rate by Sommar et al., we calculate aconcentration of Hg0 well below (about a factor of three) the observations. By prescribing a slower rate, corresponding to a turn-over time of Hg0 of one year, we calculate concentrations of both Hg0 in surface air and HgII in precipitation which correspond reasonably well, both in magnitude and temporal variation, with seasonal observations in Europe and North America. This result supports the suggestion that the oxidation by OH is an important pathway for the removal of Hg0. In view of the uncertainties associated with our calculations, this conclusion should still be regarded as tentative.  相似文献   
147.
A combination of denitrification and pesticide sorption with the biodegradable polymer poly(?‐caprolactone) (PCL) was examined. The function of PCL is to act as carbon source and carrier for the bacteria and simultaneously as sorbent for the pesticide endosulfan. In a short‐term examination (1 month) the addition of the pesticide endosulfan to a continuous‐flow fixed‐bed reactor resulted in an inhibition of biomass production without reduction of the denitrification performance. However in a long‐term semi‐batch reactor test (6 months) biomass production and partly denitrification rates were affected. No significant differences in microbial composition between the reactors were observed. Regardless of the type of reactor or presence of endosulfan, Acidovorax facilis was the main constituent.  相似文献   
148.
In this paper methods and results of laboratory experiments for the investigation of the silicate component of interstellar dust are reviewed. In Section 2 basic properties expected for astronomically important interstellar silicates (AIIS) are discussed. Chemical constraints coming from the abundance of elements, from the depletion in the interstellar gas and from theoretical calculations of the condensation processes point to magnesium silicates. Some basic structural properties of interstellar silicates, the expected high degree of lattice disorder and spectral features expected for interstellar silicate grains are discussed. In Section 3 a review on laboratory investigations of AIIS is given. Physical and chemical methods for producing amorphous silicates are summarized. Important measurements of optical data for AIIS are listed. Spectral characteristics of amorphous silicates produced in order to simulate the interstellar dust silicates are discussed. From the comparison of the observed MIR silicate bands with those of the experimentally produced silicates it is concluded that at least two types of dust silicates exist in interstellar space: molecular-cloud silicate (suggested to be of pyroxene-type) and late-type star silicate (suggested to be of olivine-type). The mass absorption coefficient at the 10 m peak of both types of silicate grains amounts to 3000 cm2 g–1 and the ratio of 20 to 10 m peaks amounts to about 0.5. Finally, open questions in connection with laboratory experiments are mentioned and recommendations for future experiments are given.Paper presented at a Workshop on The Role of Dust in Dense Regions of Interstellar Matter, held at Georgenthal, G.D.R., in March 1986.  相似文献   
149.
In this paper we investigate the properties of dust in circumstellar shells around very young massive compact IR sources (Becklin-Neugebauer objects).We found no correlation between the optical depth in the centre of the 10-m band and the 3.1-m ice band. An inverse correlation between the strength of the silicate feature and the colour temperature for the 8–13 m interval was detected. Our sample of BN objects extends this kind of relation already known for Mira stars and OH/IR stars to higher optical depths.We present a radiative transfer model for BN objects and discuss its main properties. Using this model, the interpretation of the observations led to the conclusion that the type of silicates present in the dust shells of very young stellar objects is different from that type around oxygen-rich giants and supergiants. These different silicates may be tentatively identified with pyroxenes and olivines, respectively.We studied the influence of the adopted dust model in deriving source parameters of BN objects. The object W3-IRS5 was discussed in some detail.Paper presented at a Workshop on The Role of Dust in Dense Regions of Interstellar Matter, held at Georgenthal, G.D.R., in March 1986.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号