首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   501篇
  免费   16篇
  国内免费   10篇
测绘学   2篇
大气科学   15篇
地球物理   117篇
地质学   166篇
海洋学   121篇
天文学   79篇
综合类   5篇
自然地理   22篇
  2023年   4篇
  2021年   9篇
  2020年   6篇
  2019年   25篇
  2018年   9篇
  2017年   9篇
  2016年   15篇
  2015年   3篇
  2014年   23篇
  2013年   21篇
  2012年   12篇
  2011年   15篇
  2010年   20篇
  2009年   24篇
  2008年   24篇
  2007年   31篇
  2006年   26篇
  2005年   30篇
  2004年   10篇
  2003年   15篇
  2002年   7篇
  2001年   13篇
  2000年   10篇
  1999年   18篇
  1998年   12篇
  1997年   7篇
  1996年   8篇
  1995年   5篇
  1994年   6篇
  1993年   6篇
  1992年   4篇
  1991年   2篇
  1990年   5篇
  1989年   3篇
  1988年   5篇
  1987年   9篇
  1986年   8篇
  1985年   8篇
  1984年   6篇
  1983年   9篇
  1982年   5篇
  1981年   5篇
  1980年   3篇
  1979年   4篇
  1978年   9篇
  1977年   4篇
  1976年   2篇
  1974年   3篇
  1972年   2篇
  1970年   2篇
排序方式: 共有527条查询结果,搜索用时 46 毫秒
451.
Geochemical and mineralogical studies were conducted on the 12-m-thick weathering profile of the Kata Beach granite in Phuket, Thailand, in order to reveal the transport and adsorption of rare earth elements (REE) related to the ion-adsorption type mineralization. The parent rock is ilmenite-series biotite granite with transitional characteristics from I type to S type, abundant in REE (592 ppm). REE are contained dominantly in fluorocarbonate as well as in allanite, titanite, apatite, and zircon. The chondrite-normalized REE pattern of the parent granite indicates enrichment of LREE relative to HREE and no significant Ce anomaly. The upper part of the weathering profile from the surface to 4.5 m depth is mostly characterized by positive Ce anomaly, showing lower REE contents ranging from 174 to 548 ppm and lower percentages of adsorbed REE from 34% to 68% compared with the parent granite. In contrast, the lower part of the profile from 4.5 to 12 m depth is characterized by negative Ce anomaly, showing higher REE contents ranging from 578 to 1,084 ppm and higher percentages from 53% to 85%. The negative Ce anomaly and enrichment of REE in the lower part of the profile suggest that acidic soil water in an oxidizing condition in the upper part mostly immobilized Ce4+ as CeO2 and transported REE3+ downward to the lower part of the profile. The transported REE3+ were adsorbed onto weathering products or distributed to secondary minerals such as rhabdophane. The immobilization of REE results from the increase of pH due to the contact with higher pH groundwater. Since the majority of REE in the weathered granite are present in the ion-adsorption fraction with negative Ce anomaly, the percentages of adsorbed REE are positively correlated with the whole-rock negative Ce anomaly. The result of this study suggests that the ion-adsorption type REE mineralization is identified by the occurrence of easily soluble REE fluorocarbonate and whole-rock negative Ce anomaly of weathered granite. Although fractionation of REE in weathered granite is controlled by the occurrence of REE-bearing minerals and adsorption by weathering products, the ion-adsorption fraction tends to be enriched in LREE relative to weathered granite.  相似文献   
452.
453.
The Woxi Au-Sb-W deposit is one of the largest polymetallic ore deposits in the Xuefengshan Range, southern China, hosted in low-grade metamorphosed Neoproterozoic volcaniclastic rocks. The orebodies of the deposit are predominantly composed of banded quartz veins, which are strictly controlled by bedding and faults. Petrographic observations and geochemical results are reported on the occurrence of Au and properties of the ore-forming processes for different stages in the deposit. The veins extend vertically up to 2 km without obvious vertical metal zoning. The ore-forming process can be subdivided into four mineralization stages: Pre-ore stage; Early stage (scheelite-quartz stage); Middle stage (pyrite-stibnite-quartz stage); and Late stage (stibnite-quartz sage). Four types of pyrite (Py0, Py1, Py2, and Py3) were identified in the ores and host-rock: Py0 occurs as euhedral grains with voids in the core, ranging in size from 50 to 100 μm and formed mainly in the Pre-ore stage and Early stage; Py1 occurs as subhedral grains. Small grains (around 10 μm) of Py1 form irregularly shaped clusters of variable size ranging from tens to hundreds of μm and mainly formed in the Middle stage; Euhedral-subhedral fine-grained Py2 formed in the Late stage; Minor subhedral fine-grained Py3 was deposited in the Late-stage. Stibnite is widely distributed in the Middle and Late stage ore veins. No systemic difference was recognized in mineralogical features among stibnite formed in different stages. In addition to native gold, the lattice bound Au+1 widely exists in Py1 and Py2 in the deposit, and widespread Py1 is considered as the main Au-bearing mineral with the highest Au contents. Most elements (such as Co, Ni, Cu, As, Sb, Ba, and Pb) are considered to occur as solid solution within the crystal lattice and/or invisible nanoparticles in sulfides minerals. The Co/Ni ratio of most pyrite is lower than 1, suggesting that the metals in the ore-forming fluid are sourced from sedimentary rocks. The coupled behavior between Au and As; Au and Sb suggests that the substitution of As and Sb in pyrite can enhance the incorporation of Au. Variation of trace elements in pyrites of different stages suggests some information on the mineralization processes: Large ion lithophile elements (such as Ba and Pb) are enriched in Py0 indicating that water-rock reaction occurred in the Early stage; Fine-grained Py1 with a heterogeneous distribution of elements suggests fast crystallization of pyrite in the Middle stage.  相似文献   
454.
The mineralogy and mineral chemistry of Itokawa dust particles captured during the first and second touchdowns on the MUSES‐C Regio were characterized by synchrotron‐radiation X‐ray diffraction and field‐emission electron microprobe analysis. Olivine and low‐ and high‐Ca pyroxene, plagioclase, and merrillite compositions of the first‐touchdown particles are similar to those of the second‐touchdown particles. The two touchdown sites are separated by approximately 100 meters and therefore the similarity suggests that MUSES‐C Regio is covered with dust particles of uniform mineral chemistry of LL chondrites. Quantitative compositional properties of 48 dust particles, including both first‐ and second‐touchdown samples, indicate that dust particles of MUSES‐C Regio have experienced prolonged thermal metamorphism, but they are not fully equilibrated in terms of chemical composition. This suggests that MUSES‐C particles were heated in a single asteroid at different temperatures. During slow cooling from a peak temperature of approximately 800 °C, chemical compositions of plagioclase and K‐feldspar seem to have been modified: Ab and Or contents changed during cooling, but An did not. This compositional modification is reproduced by a numerical simulation that modeled the cooling process of a 50 km sized Itokawa parent asteroid. After cooling, some particles have been heavily impacted and heated, which resulted in heterogeneous distributions of Na and K within plagioclase crystals. Impact‐induced chemical modification of plagioclase was verified by a comparison to a shock vein in the Kilabo LL6 ordinary chondrite where Na‐K distributions of plagioclase have been disturbed.  相似文献   
455.
On the basis of observations using Cs‐corrected STEM, we identified three types of surface modification probably formed by space weathering on the surfaces of Itokawa particles. They are (1) redeposition rims (2–3 nm), (2) composite rims (30–60 nm), and (3) composite vesicular rims (60–80 nm). These rims are characterized by a combination of three zones. Zone I occupies the outermost part of the surface modification, which contains elements that are not included in the unchanged substrate minerals, suggesting that this zone is composed of sputter deposits and/or impact vapor deposits originating from the surrounding minerals. Redeposition rims are composed only of Zone I and directly attaches to the unchanged minerals (Zone III). Zone I of composite and composite vesicular rims often contains nanophase (Fe,Mg)S. The composite rims and the composite vesicular rims have a two‐layered structure: a combination of Zone I and Zone II, below which Zone III exists. Zone II is the partially amorphized zone. Zone II of ferromagnesian silicates contains abundant nanophase Fe. Radiation‐induced segregation and in situ reduction are the most plausible mechanisms to form nanophase Fe in Zone II. Their lattice fringes indicate that they contain metallic iron, which probably causes the reddening of the reflectance spectra of Itokawa. Zone II of the composite vesicular rims contains vesicles. The vesicles in Zone II were probably formed by segregation of solar wind He implanted in this zone. The textures strongly suggest that solar wind irradiation damage and implantation are the major causes of surface modification and space weathering on Itokawa.  相似文献   
456.
457.
Shock pressure recorded in Yamato (Y)‐790729, classified as L6 type ordinary chondrite, was evaluated based on high‐pressure polymorph assemblages and cathodoluminescence (CL) spectra of maskelynite. The host‐rock of Y‐790729 consists mainly of olivine, low‐Ca pyroxene, plagioclase, metallic Fe‐Ni, and iron‐sulfide with minor amounts of phosphate and chromite. A shock‐melt vein was observed in the hostrock. Ringwoodite, majorite, akimotoite, lingunite, tuite, and xieite occurred in and around the shock‐melt vein. The shock pressure in the shock‐melt vein is about 14–23 GPa based on the phase equilibrium diagrams of high‐pressure polymorphs. Some plagioclase portions in the host‐rock occurred as maskelynite. Sixteen different CL spectra of maskelynite portions were deconvolved using three assigned emission components (centered at 2.95, 3.26, and 3.88 eV). The intensity of emission component at 2.95 eV was selected as a calibrated barometer to estimate shock pressure, and the results indicate pressures of about 11–19 GPa. The difference in pressure between the shock‐melt vein and host‐rock might suggest heterogeneous shock conditions. Assuming an average shock pressure of 18 GPa, the impact velocity of the parent‐body of Y‐790729 is calculated to be ~1.90 km s?1. The parent‐body would be at least ~10 km in size based on the incoherent formation mechanism of ringwoodite in Y‐790729.  相似文献   
458.
In this research, the vibration of elevator ropes, including the main rope and compensation rope are investigated simultaneously in a high-rise elevator system under earthquake excitation. Moreover, the paper presents a new control method to restrain the sway of both ropes. This study considers varying rope lengths during elevator operation which cause other system parameters such as natural frequency, and damping ratio to be time-variant variables. The dynamics of the ropes are analyzed by solving the governing non-stationary, nonlinear equation numerically. In order to mitigate the vibration of ropes in several motion conditions, particularly upwards movement, downward movement, stopped at the lowest position, and stopped at the highest position, an active equipment is installed at the compensation sheave. The stability of the system using the controller is analyzed at four states: without disturbance and static car, without disturbance and mobile car, including disturbance and static car, and including disturbance and mobile car. The efficiency of the controller used for dampening the vibration of elevator ropes is validated by numerical simulation results.  相似文献   
459.
The Precambrian and lower Paleozoic units of the Japanese basement such as the Hida Oki and South Kitakami terranes have geological affinities with the eastern Asia continent and particularly strong correlation with units of the South China block. There are also indications from units such as the Hitachi metamorphics of the Abukuma terrane and blocks in the Maizuru terrane that some material may have been derived from the North China block. In addition to magmatism, the Japanese region has seen substantial growth due to tectonic accretion. The accreted units dominantly consist of mudstone and sandstone derived from the continental margin with lesser amounts of basaltic rocks associated with siliceous deep ocean sediments and local limestone. Two main phases of accretionary activity and related metamorphism are recorded in the Jurassic Mino–Tanba–Ashio, Chichibu, and North Kitakami terranes and in the Cretaceous to Neogene Shimanto and Sanbagawa terranes. Other accreted material includes ophiolitic sequences, e.g. the Yakuno ophiolite of the Maizuru terrane, the Oeyama ophiolite of the Sangun terrane, and the Hayachine–Miyamori ophiolite of the South Kitakami terrane, and limestone‐capped ocean plateaus such as the Akiyoshi terrane. The ophiolitic units are likely derived from arc and back‐arc basin settings. There has been no continental collision in Japan, meaning the oceanic subduction record is more complete than in convergent orogens seen in intracontinental settings making this a good place to study the geological record of accretion. Hokkaido lacks most of the Paleozoic history recognized in Honshu, Shikoku, Kyushu, and the Ryukyu Islands to the south and its geology reflects the Cenozoic development of two convergent domains with volcanic arcs, their approach, and eventual collision. The Hidaka terrane reveals a cross section through a volcanic arc and the main accretionary complex of the convergent system is represented by the Sorachi–Yezo terrane.  相似文献   
460.
Abstract: The Lepanto Far Southeast porphyry Cu‐Au deposit is located beneath and to the southeast of the Lepanto enargite‐luzonite Cu–Au deposit in Mankayan, Benguet Province, Philippines. The principal orebody consists of potassic alteration subjected to partial retrograde chlorite alteration that rims stock‐work of quartz‐anhydrite veinlets. Fluid inclusions found in stockwork quartz and anhydrite in the biotitized orebody center are dominated by polyphase inclusions that homogenize at temperatures of >500C. Sulfur isotopic thermometry applied to the sulfides‐anhydrite pairs suggests around 500C. The principal ore minerals associated with quartz‐anhydrite stockworks are chalcopyrite and pyrite with minor bornite and Bi–Te–bearing tennantite, with trace of native gold. Rounded pyrite grains appear fractured and corroded and are interpreted as remnants of primary intermediate solid solution + pyrite assemblage. A breccia pipe truncates the deposit. Mineralization in the breccia pipe is brought by quartz‐anhydrite veinlets and infilling in the interstices between clasts. Chalcopyrite‐Au mineralization associated with molybdenite is recognized in the deeper zone in the breccia pipe. Fluid inclusion microthermometry on polyphase inclusions in veinlet quartz as well as sulfur isotope thermometry applied for the pair of anhydrite and sulfides suggests >450C. Fluid inclusions in veinlet quartz and anhydrite in the fringe advanced argillic alteration are chiefly composed of coexisting liquid‐rich inclusions and gas‐rich inclusions, in addition to coexisting polyphase inclusions and gas‐rich inclusions. These inclusions exhibit a wide range of homogenization temperatures, suggesting heterogeneous entrapping in the two‐fluid unmixing region. Sulfur isotopes of aqueous sulfide and sulfate exhibit a general trend from the smallest fractionation pairs (about 11%) in the biotitized orebody center to the largest fractionation (about 25%) pairs in the fringe advanced argillic alteration, suggesting a simple evolution of hydrothermal system. The slopes of arbitrary regression lines in δ34S versus 34S[SO4 = –H2S] diagram suggest that the abundance ratio of aqueous sulfate to sulfide in the hydrothermal fluid has been broadly constant at about 1:3 through temperature decrease. The intersection of these two regression lines at the δ34S axis indicates that the bulk δ34S is about +6%. Thus, the Lepanto FSE deposit is a further example which confirms enrichment in 34S in the hydrous intermediate to silicic magmas and associated magmatic hydrothermal deposits in the western Luzon arc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号