首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2323篇
  免费   168篇
  国内免费   12篇
测绘学   75篇
大气科学   214篇
地球物理   729篇
地质学   841篇
海洋学   166篇
天文学   341篇
综合类   22篇
自然地理   115篇
  2023年   5篇
  2022年   21篇
  2021年   49篇
  2020年   50篇
  2019年   40篇
  2018年   96篇
  2017年   93篇
  2016年   148篇
  2015年   122篇
  2014年   135篇
  2013年   207篇
  2012年   170篇
  2011年   150篇
  2010年   129篇
  2009年   119篇
  2008年   100篇
  2007年   73篇
  2006年   93篇
  2005年   61篇
  2004年   60篇
  2003年   60篇
  2002年   60篇
  2001年   45篇
  2000年   24篇
  1999年   20篇
  1998年   27篇
  1997年   29篇
  1996年   12篇
  1995年   24篇
  1994年   13篇
  1993年   11篇
  1992年   10篇
  1991年   23篇
  1990年   17篇
  1989年   13篇
  1988年   6篇
  1987年   11篇
  1986年   9篇
  1985年   11篇
  1984年   15篇
  1983年   13篇
  1982年   9篇
  1981年   10篇
  1980年   9篇
  1979年   15篇
  1976年   6篇
  1975年   10篇
  1974年   8篇
  1973年   12篇
  1969年   9篇
排序方式: 共有2503条查询结果,搜索用时 468 毫秒
81.
This study addresses paleoclimate influences in a southern Amazonia ecotone based on multiproxy records from lakes of the Carajás region during the last 45k cal a bp. Wet and cool environmental conditions marked the initial deposition in shallow depressions with detrital sediments and high weathering rates until 40k cal a bp. Concomitantly, forest and C3 canga plants, along with cool-adapted taxa, developed; however, short drier episodes enabled expansion of C4 plants and diagenetic formation of siderite. A massive event of siderite formation occurred approximately 30k cal a bp under strong drier conditions. Afterwards, wet and cool environmental conditions returned and persisted until the Last Glacial Maximum (LGM). The LGM was marked by lake-level lowstands and subaerial exposure. The transition from the LGM to the Holocene is marked by the onset of oscillations in temperature and humidity, with an expansion of forest and canga plants. Cool taxa were present for the last time in the Carajás region ~ 9.5–9k cal a bp. After 10k cal a bp , shallow lakes became upland swamps due to natural infilling processes, but the current vegetation types and structures of the plateaus were acquired only after 3k cal a bp under wetter climatic conditions.  相似文献   
82.
This paper compares stable isotope (δ18O and δ13C) records of early–middle Holocene land snail shells from the archaeological deposits of Grotta di Latronico 3 (LTR3; southern Italy) with modern shell isotopic data. No substantial interspecific variability was observed in shell δ18O (δ18Os) of modern specimens (Pomatias elegans, Cornu aspersum, Eobania vermiculata, Helix ligata and Marmorana fuscolabiata). In contrast, interspecific shell δ13C (δ13Cs) variability was significant, probably due to different feeding behaviour among species. The δ18Os values of living land snails suggest that species hibernate for a long period during colder months, so that the signal of 18O‐depleted winter rainfall in their δ18Os is lost. This suggests that δ18Os and δ13Cs values of Pomatias elegans from this archaeological succession provide valuable clues for seasonal (spring–autumn) climatic conditions during the early–middle Holocene. The δ18Os values of fossil specimens are significantly lower than in modern shells and in agreement with other palaeoclimatic records, suggesting a substantial increase of precipitation and/or persistent changes in air mass source trajectories over this region between ca. 8.8 cal ka BP and 6.2–6.7 ka ago. The δ13Cs trend suggests a transition from a slightly 13C‐enriched to a 13C‐depleted diet between early and middle Holocene compared to present conditions. We postulate that this δ13Cs trend might reflect changes in the C3 vegetation community, potentially combined with other environmental factors such as regional moisture increase and the progressive decrease of atmospheric CO2 concentration. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
83.
The origin of the Anti‐Atlas relief is one of the currently debated issues of Moroccan geology. To constrain the post‐Variscan evolution of the Central Anti‐Atlas, we collected nine samples from the Precambrian basement of the Bou Azzer‐El Graara inlier for zircon and apatite fission‐track thermochronology. Zircon ages cluster between 340 ± 20 and 306 ± 20 Ma, whereas apatite ages range from 171 ± 7 Ma to 133 ± 5 Ma. Zircon ages reflect the thermal effect of the Variscan orogeny (tectonic thickening of the ca. 7 km‐thick Paleozoic series), likely enhanced by fluid advection. Apatite ages record a complex Mesozoic–Cenozoic exhumation history. Track length modelling yields evidence that, (i) the Precambrian basement was still buried at ca. 5 km depth by Permian times, (ii) the Central Anti‐Atlas was subjected to (erosional) exhumation during the Triassic‐Early Cretaceous, then buried beneath ca. 1.5 km‐thick Cretaceous‐Paleogene deposits, (iii) final exhumation took place during the Neogene, contemporaneously with that of the High Atlas.  相似文献   
84.
85.
The interpretation of fluvial styles from the rock record is based for a significant part on the identification of different types of fluvial bars, characterized by the geometric relationship between structures indicative of palaeocurrent and surfaces interpreted as indicative of bar form and bar accretion direction. These surfaces of bar accretion are the boundaries of flood‐related bar increment elements, which are typically less abundant in outcrops than what would be desirable, particularly in large river deposits in which each flood mobilizes large volumes of sediment, causing flood‐increment boundary surfaces to be widely spaced. Cross‐strata set boundaries, on the other hand, are abundant and indirectly reflect the process of unit bar accretion, inclined due to the combined effect of the unit bar surface inclination and the individual bedform climbing angle, in turn controlled by changes in flow structure caused by local bar‐scale morphology. This work presents a new method to deduce the geometry of unit bar surfaces from measured pairs of cross‐strata and cross‐strata set boundaries. The method can be used in the absence of abundant flood‐increment bounding surfaces; the study of real cases shows that, for both downstream and laterally accreting bars, the reconstructed planes are very similar to measured bar increment surfaces.  相似文献   
86.
87.
88.
89.
[Translated by the editorial staff] Simulating the precipitation regime of Northern Africa is challenging for regional climate models, particularly because of the strong spatial and temporal variability of rain events in the region. In this study we evaluate simulations conducted with two recent versions of regional climate models (RCM) developed in Canada: the CRCM5 and CanRCM4. Both are also used in the COordinated Regional Climate Downscaling EXperiment (CORDEX)-Africa. The assessment is based on the occurrence, duration, and intensity indices of daily precipitation in Maghreb during the fall and spring seasons from 1998 to 2008. We also examine the links between the North-Atlantic Oscillation (NAO) index, weather systems, and the precipitation regime over the region. During the rainy season (September to February), the CRCM5 reproduces the frequency and intensity of extreme precipitation adequately, as well as the occurrence of days with rain, while the CanRCM4 underestimates precipitation extremes. The study of links between weather systems and the precipitation regime shows that, along the Atlantic coast, precipitation (occurrence, intensity, and wet sequences) increases significantly with storm frequency in the fall. In winter, these links grow stronger going east, from the Atlantic coast to the Mediterranean coast. The negative phases of the NAO index are statistically associated with the increase in rain intensity, extremes, and accumulation along the Atlantic coast in the fall. However, the link weakens in winter over these regions and strengthens along the Mediterranean coast as the precipitation frequency rises during negative phases of the NAO. Both RCMs generally reproduce the links between the NAO and the precipitation regime well, regardless of location.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号