首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   426篇
  免费   13篇
  国内免费   12篇
测绘学   11篇
大气科学   41篇
地球物理   113篇
地质学   117篇
海洋学   100篇
天文学   39篇
综合类   4篇
自然地理   26篇
  2023年   2篇
  2021年   7篇
  2020年   8篇
  2019年   11篇
  2018年   9篇
  2017年   17篇
  2016年   17篇
  2015年   12篇
  2014年   17篇
  2013年   14篇
  2012年   15篇
  2011年   24篇
  2010年   25篇
  2009年   18篇
  2008年   15篇
  2007年   19篇
  2006年   17篇
  2005年   23篇
  2004年   9篇
  2003年   18篇
  2002年   9篇
  2001年   17篇
  2000年   10篇
  1999年   5篇
  1998年   11篇
  1997年   9篇
  1996年   11篇
  1995年   6篇
  1993年   6篇
  1992年   4篇
  1991年   4篇
  1990年   4篇
  1989年   3篇
  1988年   4篇
  1987年   4篇
  1985年   5篇
  1984年   2篇
  1983年   2篇
  1982年   4篇
  1981年   3篇
  1980年   3篇
  1979年   6篇
  1978年   5篇
  1977年   2篇
  1975年   2篇
  1974年   3篇
  1973年   2篇
  1971年   2篇
  1962年   1篇
  1955年   1篇
排序方式: 共有451条查询结果,搜索用时 78 毫秒
231.
The skarn‐type tungsten deposit of the Date‐Nagai mine is genetically related to the granodiorite batholith of the Iidateyama body. Skarn is developed along the contact between pelitic hornfels and marble that remains as a small roof pendant body directly above the granodiorite batholith. Zonal arrangement of minerals is observed in skarn. The zonation consists of wollastonite, garnet, garnet‐epidote, and vesuvianite‐garnet zones, from marble to hornfels. Sheelite is included in garnet, garnet‐epidote, and vesuvianite‐garnet zones. The oxygen isotope values of skarn minerals were obtained as δ18O = 4.2–7.7‰ for garnet, 5.9–6.9‰ for vesuvianite, ?0.3–3.4‰ for scheelite, 6.0–10.9‰ for quartz, and 8.2‰ for muscovite. The temperature of skarn‐formation was calculated from oxygen isotopic values of scheelite‐quartz pairs to be 288°C. Calculated oxygen isotope values of fluid responsible for skarn minerals were 6.1–9.5‰ for garnet, 1.2–4.8‰ for scheelite, ?1.3‐3.6‰ for quartz, and 4.5‰ for muscovite. Garnet precipitated from the fluids of different δ18O values from scheelite, quartz, and muscovite. These δ18O values suggest that the origin of fluid responsible for garnet was magmatic water, while evidence for the presence of a meteoric component in the fluids responsible for middle to later stages minerals was confirmed.  相似文献   
232.
The recently discovered Xiaobeigou fluorite deposit is situated in the southern part of the Southern Great Xing'an Range metallogenic belt. Fluorite‐bearing veins are rather common over the whole area. So far, 11 mineralized veins have been delineated at the Xiaobeigou deposit. Orebodies of the deposit are mainly hosted in Permian and Jurassic volcano‐sedimentary rocks. The orebodies in this mining district exhibit a well‐developed vertical zonation: from top to bottom, the orebodies can be divided into upper, central, and lower zones. The central zone is the most important part for mining operations, and it shows lateral zonation of fluorite mineralization. Rare earth element (REE) contents of the investigated samples are relatively low (less than 30.2 ppm). Furthermore, the REE contents of the fluorite grains from early to late ore stages exhibit a decreasing trend. All the fluorite samples show no or slightly positive Eu anomalies. Three types of fluid inclusions (FIs) are distinguished in the quartz and fluorite samples, including pure‐liquid single‐phase (PL‐type), liquid‐rich two‐phase (L‐Type), and vapor‐rich two‐phase (V‐type) FIs. The FIs hosted in early‐stage quartz were homogenized at 159.5–260.7°C (mainly 160–240°C); their salinities range from 0.18 to 1.22 wt.% NaCl eqv. The FIs hosted in early‐stage fluorite yield slightly lower homogenization temperatures of 144.4–266.8°C (peaking at 140–220°C), which correspond to salinities of 0.18–0.88 wt.% NaCl eqv. Homogenization temperatures and salinities for the late stage are 132.5–245.8°C (mainly 160–180°C) and 0.18–1.40 wt.% NaCl eqv., respectively. Laser Raman spectroscopy of FIs shows that both the vapor and liquid compositions of the inclusions are dominated by H2O. The H–O isotopic compositions at Xiaobeigou suggest that the ore‐forming fluids are predominantly of meteoric water origin. The Xiaobeigou deposit can be classified as a typical low‐temperature hydrothermal vein‐type fluorite deposit. Combined with regional data, we infer that the fluorite mineralization occurred during the Late Mesozoic in an extensional setting.  相似文献   
233.
Izu Peninsula in central Japan, the northern tip of the Izu‐Bonin arc, hosts numerous epithermal Au–Ag vein deposits of low‐sulfidation style. All have similar vein textures, mineralogy, and alteration. Geochemical data from fluid inclusions in vein quartz, the mineralogy and mineral chemistry of alteration, and stable isotope data indicate that auriferous hydrothermal activity occurred under subaerial conditions. The K–Ar ages of auriferous vein minerals are <1.5 Ma, indicating that the mineralization took place after extensive submarine volcanism for the host rocks. These observations suggest that Au–Ag mineralization was synchronous with the development of an extensional regime of the Izu block after its collision with the Honshu arc after 1.5 Ma. This collision resulted in the shifting of the Izu block far from the trench to the rear position, and the subduction of the Izu block along the Suruga trough to the west and along the Sagami trough to the east. The reararc position of the Izu block and double subduction resulted in crustal extension, upwelling of asthenospheric mantle, and tholeiitic magmatism reflected by mafic dyke swarms and subsequent monogenetic volcanic activity in the Izu peninsula. The timing of the Au mineralization in the Izu Peninsula during the beginning of lithospheric extension is similar to that of the Sado Au–Ag deposit on Sado island in the Japan Sea. Two mineralization events coincide with extensive tholeiitic mafic volcanism and injections of dyke swarms related to the back‐arc opening of the Japan Sea. The geological setting of the Au–Ag mineralization in Izu and Sado is also similar to that of the epithermal Au–Ag deposits in northern Nevada, where mineralization was contemporaneous with crustal extension and tholeiitic mafic magmatism derived from the asthenospheric mantle. This study suggests that epithermal Au mineralization at shallow crustal depths is a product of large‐scale lithospheric evolution.  相似文献   
234.
The results of ruthenium tetroxide (RuO4) oxidation of a mature Class Ib amber polymer are reported and discussed. These data indicate that the residual double bond present in mature Class I ambers is not located in the A/B ring structure of these materials and that C17 of the original labdanoid precursors is retained in mature Class I ambers as a methyl group. These data also suggest that the reaction which results in formation of the residual unsaturated structure in mature ambers also results in a second covalent connection between the A/B ring system and the polymer backbone, probably through C8 of the original labdanoid structure.  相似文献   
235.
The Great Barrier Reef (GBR) shelf contains a range of coral reefs on the highly turbid shallow inner shelf, where interaction occurs with terrigenous sediments. The modern hydrodynamic and sedimentation regimes at Paluma Shoals, a shore‐attached ‘turbid‐zone’ coral reef, and at Phillips Reef, a fringing reef located 20 km offshore, have been studied to document the mechanisms controlling turbidity. At each reef, waves, currents and near‐bed turbidity were measured for a period of ≈1 month. Bed sediments were sampled at 135 sites. On the inner shelf, muddy sands are widespread, with admixed terrigenous and carbonate gravel components close to the reefs and islands, except on their relatively sheltered SW side, where sandy silty clays occur. At Paluma Shoals, the coral assemblage is characteristic of inner‐shelf or sheltered habitats on the GBR shelf (dominated by Galaxea fascicularis, up to >50% coral cover) and is broadly similar to that at Phillips Reef, further offshore and in deeper water. The sediments of the Paluma Shoals reef flats consist of mixed terrigenous and calcareous gravels and sands, with intermixed silts and clays, whereas the reef slope is dominated by gravelly quartz sands. The main turbidity‐generating process is wave‐driven resuspension, and turbidity ranges up to 175 nephelometric turbidity units (NTU). In contrast, at Phillips Reef, turbidity is <15 NTU and varies little. At Paluma Shoals, turbidity of >40 NTU probably occurs for a total of >40 days each year, and relatively little time is spent at intermediate turbidities (15–50 NTU). The extended time spent at either low or high turbidities is consistent with the biological response of some species of corals to adopt two alternative mechanisms of functioning (autotrophy and heterotrophy) in response to different levels of turbidity. Sedimentation rates over periods of hours may reach the equivalent of 10 000 times the mean global background terrigenous flux (BTF) of sediment to the sea floor, i.e. 10 000 BTF, over three orders of magnitude greater than the Holocene average for Halifax Bay of <3 BTF. As elsewhere along the nearshore zone of the central GBR, dry‐season hydrodynamic conditions form a primary control upon turbidity and the distribution of bed sediments. The location of modern nearshore coral reefs is controlled by the presence of suitable substrates, which in Halifax Bay are Pleistocene and early Holocene coarse‐grained (and relatively stable) alluvial deposits.  相似文献   
236.
Concentrations of radon 222Rn andair pollutants, meteorological parametersnear the surface and vertical profiles of meteorological elements were measured atUchio (Okayama City, Okayama Prefecture, Japan) 12 km north from the coast ofthe Inland Sea of Japan. In the nighttime, the 222Rn concentration increased in the case of weak winds, but did not increase as much in the case of moderate or strong winds, as had been expected. In the daytime, the 222Rn concentrationheld at a slightly higher than average level for the period from sunrise to about 1100 JST. It is considered that this phenomenon is due to a period of morning calm, that is, a transition period from land breeze to sea breeze.NO, which is sensitive to traffic volume,brought information concerning advection.Oxidant concentrations,which reflect the availability of sunlight,acted in the reverse manner to 222Rnconcentrations. Thus, a set of 222Rn and air pollutants could provide useful information regarding the local conditions of the atmospheric boundary layer.  相似文献   
237.
Ken Barker puts forward an idea that may have a place in astrophysical modelling.
Torus structures that roll and orbit the centre of mass can produce a family of nested, almost elliptical orbits. These orbits, with the centre of mass at one focus, have a range of eccentricities and are inclined to the principal plane of the torus. Individual orbiting particles have an "anti-collision feature" from the nature of the rolling torus. In turn, because the torus can be regarded as a family of nested elliptical orbits, it rolls without needing any additional force. The system is acted upon only by central gravitational attraction and has low dissipation and a long lifetime.  相似文献   
238.
Urban stream channel hazards   总被引:4,自引:0,他引:4  
Ken J Gregory  & Anne Chin 《Area》2002,34(3):312-321
In managing urban stream channels there are pressures to use soft engineering techniques to restore channels wherever possible, to undertake management within a drainage basin context, to produce sustainable solutions and to consider community views. However, specific methods for characterizing the channel network in terms of possible management options have not been developed explicitly for urban areas. A method of characterizing the entire drainage network of urban areas, based upon segmentation of the stream channel network according to the incidence of road crossings and stormwater outfalls, is proposed together with consideration of ways in which the segments can be characterized, including stream channel hazards as a means of providing one basis for urban channel management.  相似文献   
239.
The National Gravity Data Base has been developed over the past 15 years in response to national and international geoscience requirements. The data base contains information pertaining to gravity standardization networks in Canada and abroad, gravity anomaly mapping in Canada, instrumental parameters, digital terrain and crustal motion. Flexible data management capability and minimal software maintenance costs result from extensive use of the System 2000 DBMS package. Interfaced with the data base are several applications software systems which perform various reduction, editing, adjustment, updating, retrieval and display operations. Presented at International Symposium on Management of Geodetic Data, Copenhagen, August 24–26, 1981.  相似文献   
240.
An instrusive dacite and a salic pumice, emplaced late in the evolution of the Miocene (c. 10 m.y.) Króksfjördur volcano, NW Iceland, contain a varied assemblage of xenolithic metaigneous rocks. Mineral and rock chemistry shows that the dacite is very similar to calc-alkaline salic rocks from the SW Pacific. It contains phenocrystic plagioclase, quartz, pyroxene, cummingtonite, hornblende, biotite, two oxides, apatite and zircon in a rhyolitic glass. The rock equilibrated at 700 to 750°C. P ~ 1.6 Kbar and PH2O ~ 1 Kbar. The xenoliths are layered gabbros, granophyres and various fine-grained hornfelses and show that the dacite magma was residing within a gabbro intrusion capped by granophyre prior to the eruption. The hornfelses are amphibole-plagioclase, amphibole-pyroxene-plagioclase and pyroxene-plagioclase rocks formed during high-temperature metamorphism of basic dykes cutting the gabbro intrusion. The gabbros and hornfelses mostly record higher metamorphic temperatures (850–940°C) than the dacite, and indicate that they were equilibrated during the ascent of a magma body into a hydrous high-level region within the volcano. During a following thermal decline, the hydrated magma cooled to form the first cummingtonite-bearing low-T magma to be recorded from the ocean ridge systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号