首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   873篇
  免费   63篇
  国内免费   3篇
测绘学   10篇
大气科学   74篇
地球物理   260篇
地质学   339篇
海洋学   57篇
天文学   169篇
综合类   1篇
自然地理   29篇
  2023年   7篇
  2022年   6篇
  2021年   11篇
  2020年   13篇
  2019年   8篇
  2018年   36篇
  2017年   35篇
  2016年   56篇
  2015年   33篇
  2014年   57篇
  2013年   76篇
  2012年   53篇
  2011年   42篇
  2010年   40篇
  2009年   51篇
  2008年   32篇
  2007年   19篇
  2006年   19篇
  2005年   37篇
  2004年   30篇
  2003年   14篇
  2002年   12篇
  2001年   12篇
  2000年   6篇
  1999年   8篇
  1998年   9篇
  1997年   11篇
  1996年   12篇
  1995年   17篇
  1994年   12篇
  1993年   5篇
  1991年   5篇
  1990年   4篇
  1989年   4篇
  1988年   3篇
  1985年   8篇
  1984年   13篇
  1983年   14篇
  1982年   12篇
  1981年   14篇
  1980年   5篇
  1979年   9篇
  1978年   12篇
  1977年   7篇
  1975年   7篇
  1974年   4篇
  1973年   3篇
  1972年   4篇
  1969年   7篇
  1966年   3篇
排序方式: 共有939条查询结果,搜索用时 15 毫秒
81.
Pollen‐based quantitative estimates of seasonal precipitation from Lake Pergusa and lake‐level data from Lake Preola in Sicily (southern Italy) allow three successive periods to be distinguished within the Holocene: an early Holocene period before ca. 9800 cal a BP with rather dry climate conditions in winter and summer, a mid‐Holocene period between ca. 9800 and 4500 cal a BP with maximum winter and summer wetness, and a late Holocene period after 4500 cal a BP with declining winter and summer wetness. This evolution observed in the south‐central Mediterranean shows strong similarities to that recognized in the eastern Mediterranean. But, it contrasts with that reconstructed in north‐central Italy, where the mid‐Holocene appears to be characterized by a winter (summer) precipitation maximum (minimum), while the late Holocene coincided with a decrease (increase) in winter (summer) precipitation. Maximum precipitation at ca. 10 000–4500 cal a BP may have resulted from (i) increased local convection in response to a Holocene insolation maximum at 10 000 cal a BP and then (ii) the gradual weakening of the Hadley cell activity, which allowed the winter rainy westerlies to reach the Mediterranean area more frequently. After 4500 cal a BP, changes in precipitation seasonality may reflect non‐linear responses to orbitally driven insolation decrease in addition to seasonal and inter‐hemispheric changes of insolation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
82.
This work presents the first synthesis of secular to millenary morphological evolutions and stratigraphy of a wave-dominated estuary, the Arcachon lagoon, from a combination of unpublished bathymetric maps (1865 and 2001), core results and high-resolution seismic profiles recorded for the first time in this lagoon. The Arcachon lagoon is located on the Atlantic coast of France, facing the wave-dominated shelf of the Bay of Biscay. It is a mesotidal semi-enclosed environment of about 160 km2.The sediment budget of the Arcachon lagoon was computed by subtracting the 1865 bathymetric map from that of 2001. The computed volume difference is low (?9.9±35×106 m3 in 136 yrs) and is the result of the balance between erosion and accretion that occurs within tidal channels and tidal flats, respectively. This morphological evolution pattern is explained by low sediment supply and also by the tidal distortion resulting from the morphology of the lagoon. Deep channels connected to the inlet are dominated by ebb currents inducing erosion. Tidal flats and transverse channels display weak or flood-dominated tidal currents leading to the deposition of silts. The areas of tidal flat siltation locally correlate with the presence of oyster farms, suggesting the influence of Man on the lagoon sediment-fill. Transverse channel-infill is related to weak tidal currents resulting from the hydraulically inefficient orientation of these channels which served as an ancient drainage network.Evidence for tidal channel-infill and channel abandonment are also provided by seismic profiling and cores. The upper stratigraphic succession of the lagoon (about 10 m thick) includes four main stratigraphic units dominated by channel-fills. The two lower units (around 7500–2800 yrs BP) display tabular-shape sandy channels interpreted to be records of the open estuarine phase of the Arcachon lagoon. The two upper units (around 2800 yrs BP to present-day) display U-shaped mixed sand-and-mud channel-fills interpreted to be records of the closure of the lagoon. Given that the basal estuarine units are transgressive and the upper lagoonal units are regressive, the main stratigraphic change at around 2800 yrs BP is interpreted as being the maximum flooding surface (MFS). This late MFS is explained by the low sediment supply. It is proposed that the transition from the estuarine to the lagoonal phase is related to the development of the Cap-Ferret spit in response to an increase in the ratio between wave power to tide power. This change in wave-to-tide ratio may be triggered by wave power increase following the Subboreal/Subatlantic climate instability or a decrease in tide power following a decrease in tidal prism related to the lagoon sediment-fill.Thus, the evolution of the Arcachon lagoon over the last millenaries was mainly controlled by its spit development, leading to a wave-dominated estuary in terms of its geomorphology. Once it was partially closed, extensive mud flats developed in the lagoon which became ebb-dominated.  相似文献   
83.
Fresh water availability has recently become a serious concern in the Italian Apennines, as various activities rely on a predictable supply. Along the ridge between Scansano and Magliano in Toscana, in southern Tuscany, the situation is further complicated by contamination of the nearby alluvial aquifers. Aquifers locally consist of thin fractured reservoirs, generally within low-permeability formations, and it can be difficult to plan the exploitation of resources based on conventional techniques. An integrated study based on geological data investigated the link between tectonics and groundwater circulation, to better define the hydrological model. After the regional identification of fault and fracture patterns, a major structure was investigated in detail to accurately map its spatial position and to understand the geometry and properties of the associated aquifer and assess its exploitation potential. The subsurface around the fault zone was clearly imaged using ground probing radar, two-dimensional and three-dimensional resistivity tomography, and three-dimensional shallow seismic surveys. The vertical and horizontal contacts between the different geological units of the Ligurian and Tuscan series were resolved with a high degree of spatial accuracy. Three-dimensional high-resolution geophysical imaging proved to be a very effective means of characterising small-scale fractured reservoirs.  相似文献   
84.
Responses to abiotic and biotic stresses that potentially drive the vertical zonation of the intertidal lichens Hydropunctaria maura, an upper littoral lichen, and Wahlenbergiella mucosa, a lower littoral lichen, were investigated in field and laboratory experiments. When transplanted, both lichens exhibited an inability to survive outside their normal vertical distribution range. W. mucosa appeared to be unable to tolerate prolonged periods of desiccation following translocation from lower to upper littoral regions, whereas H. maura was unable to survive in lower littoral zones possibly owing to increased grazing pressure. The effect of desiccation in both lichens was compared using pulse amplitude modulated chlorophyll fluorescence and infra‐red gas analysis; results indicated a more hydration‐dependent nature of W. mucosa. Photosynthetic (algal) pigments and phenolic compounds were determined in both lichen thalli, and a range of additional coastal lichens occupying a natural gradient from upper to lower shore levels. Pigment composition and concentration in both lichen thalli were similar whereas levels of phenolic compounds were up to three times higher in W. mucosa than H. maura. Pigment and phenolic concentration and composition exhibited some seasonality across 13 different lichens originating from different shore levels. Phenolic concentration increased towards the lower shore, suggesting a potential anti‐herbivory function. This marks the first study of pigments and phenolics in coastal lichen communities, and prompts further investigations on the particular physiological features of marine and maritime lichens that enable them to thrive in this extreme environment.  相似文献   
85.
86.
In a previous paper (Chassefière et al. 2013 ), we have shown that most volcanic sulfur released to the early Mars atmosphere could have been trapped in the upper cryosphere under the form of CO2‐SO2 clathrates. Huge amounts of sulfur, up to the equivalent of an ~1 bar atmosphere of SO2, would have been stored in the Noachian upper cryosphere, then massively released to the atmosphere during the Hesperian due to rapidly decreasing CO2 pressure. It could have resulted in the formation of the large sulfate deposits observed mainly in Hesperian terrains, whereas no or little sulfates are found at the Noachian. In the present paper, we first clarify some aspects of our previous work. We discuss the possibility of a smaller cooling effect of sulfur particles, or even of a net warming effect. We point out the fact that CO2‐SO2 clathrates formed through a progressive enrichment of a pre‐existing reservoir of CO2 clathrates and discuss processes potentially involved in the slow formation of a SO2‐rich upper cryosphere. We show that episodes of sudden destabilization at the Hesperian may generate 1000 ppmv of SO2 in the atmosphere and contribute to maintaining the surface temperature above the water freezing point.  相似文献   
87.
The Maâdna structure is located approximately 400 km south of Algiers (33°19′ N, 4°19′ E) and emplaced in Upper‐Cretaceous to Eocene limestones. Although accepted as an impact crater on the basis of alleged observations of shock‐diagnostic features such as planar deformation features (PDFs) in quartz grains, previous works were limited and further studies are desirable to ascertain the structure formation process and its age. For this purpose, the crater was investigated using a multidisciplinary approach including field observations, detailed cartography of the different geological and structural units, geophysical surveys, anisotropy of magnetic susceptibility, paleomagnetism, and petrography of the collected samples. We found that the magnetic and gravimetric profiles highlight a succession of positive and negative anomalies, ones that might indicate the occurrence of a causative material which is at least in part identical. Geophysical analysis and modeling suggest the presence of this material within the crater at a depth of about 100 m below the surface. Using soil magnetic susceptibility measurements, the shallowest magnetized zone in the central part of the crater is identified as a recently deposited material. Paleomagnetic and rock magnetic experiments combined with petrographic observations show that detrital hematite is the main magnetic carrier although often associated with magnetite. A primary magnetization is inferred from a stable remanence with both normal and reverse directions, carried by these two minerals. Although this is supposed to be a chemical remagnetization, its normal polarity nature is considered to be a Pliocene component, subsequent to the crater formation. The pole falls onto the Miocene‐Pliocene part of the African Apparent Polar Wander Path (APWP). Consequently, we estimate the formation of the Maâdna crater to have occurred during the time period extending from the Late Miocene to the Early Pliocene. Unfortunately, our field and laboratory investigations do not allow us to confirm an impact origin for the crater as neither shatter cones, nor shocked minerals, were found. A dissolved diapir with inverted relief is suggested as an alternative to the impact hypothesis, which can still be considered as plausible. Only a drilling may provide a definite answer.  相似文献   
88.
89.
90.
Abstract

Carbonyl sulphide (OCS) is an important precursor of sulphate aerosols and consequently a key species in stratospheric ozone depletion. The SPectromètre InfraRouge d'Absorption à Lasers Embarqués (SPIRALE) and shortwave infrared (SWIR) balloon-borne instruments have flown in the tropics and in the polar Arctic, and ground-based measurements have been performed by the Qualité de l'Air (QualAir) Fourier Transform Spectrometer in Paris. Partial and total columns and vertical profiles have been obtained to study OCS variability with altitude, latitude, and season. The annual total column variation in Paris reveals a seasonal variation with a maximum in April–June and a minimum in November–January. Total column measurements above Paris and from SWIR balloon-borne instrument are compared with several MkIV measurements, several Network for the Detection of Atmospheric Composition Change (NDACC) stations, aircraft, ship, and balloon measurements to highlight the OCS total column decrease from tropical to polar latitudes. OCS high-resolution in situ vertical profiles have been measured for the first time in the altitude range between 14 and 30?km at tropical and polar latitudes. OCS profiles are compared with Atmospheric Chemistry Experiment (ACE) satellite measurements and show good agreement. Using the correlation between OCS and N2O from SPIRALE, the OCS stratospheric lifetime has been accurately determined. We find a stratospheric lifetime of 68?±?20 years at polar latitudes and 58?±?14 years at tropical latitudes leading to a global stratospheric sink of 49?±?14?Gg?S?y?1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号