首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   531篇
  免费   31篇
  国内免费   2篇
测绘学   36篇
大气科学   44篇
地球物理   155篇
地质学   162篇
海洋学   31篇
天文学   87篇
综合类   2篇
自然地理   47篇
  2023年   3篇
  2022年   7篇
  2021年   17篇
  2020年   10篇
  2019年   15篇
  2018年   26篇
  2017年   23篇
  2016年   22篇
  2015年   25篇
  2014年   25篇
  2013年   32篇
  2012年   20篇
  2011年   26篇
  2010年   23篇
  2009年   34篇
  2008年   25篇
  2007年   28篇
  2006年   32篇
  2005年   18篇
  2004年   18篇
  2003年   8篇
  2002年   19篇
  2001年   11篇
  2000年   5篇
  1999年   6篇
  1998年   3篇
  1996年   3篇
  1995年   2篇
  1994年   4篇
  1993年   2篇
  1986年   3篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1981年   4篇
  1980年   5篇
  1979年   3篇
  1978年   4篇
  1976年   4篇
  1975年   4篇
  1974年   2篇
  1971年   4篇
  1967年   3篇
  1966年   2篇
  1965年   2篇
  1963年   3篇
  1962年   3篇
  1959年   2篇
  1958年   2篇
  1957年   2篇
排序方式: 共有564条查询结果,搜索用时 0 毫秒
561.
More than half of the surface sediments covering the continental shelves are sandy, which may permit substantial sub-seafloor pore water advection. Knowledge of sediment permeability is required for quantifying advection and associated solute transport, but studies of marine sediments typically report grain size analyses rather than permeability. Here data from 23 studies were examined to determine the range in permeabilities reported for sublittoral marine sands and to assess the utility of permeability–grain size relationships in this setting. In the resulting database, the permeability of small (∼30 cm) undisturbed cores collected from the sea floor all fell between 2 × 10−12 and 4 × 10−10 m2, a range where advective transport induced by wave and current action should be pervasive. The range in grain size was very similar for near-shore (<10 m water depth) and continental shelf samples (>10 m water depth), but the permeability of the continental shelf samples was consistently lower for the same median grain size. Empirical permeability–grain size relationships generated a poor fit (r2 = 0.35) for the aggregate data, but separate relationships for near-shore and continental shelf samples were significantly better, r2 = 0.66 and 0.77, respectively. Permeability–grain size relationships thus may be useful for sublittoral sands, but a larger database needs to be accumulated before reliable fit parameters and variability can be predicted. Thus it is recommended that permeability be routinely determined when characterizing sedimentological properties of marine sand deposits. Concurrent determinations of sediment bulk density and porosity may further improve estimates of permeability.  相似文献   
562.
Observations of the western Arabian Sea over the last decade have revealed a rich filamentary eddy structure, with large horizontal SST gradients in the ocean, developing in response to the southwest monsoon winds. This summertime oceanic condition triggers an intense mesoscale coupled interaction, whose overall influence on the longer-term properties of this ocean remains uncertain. In this study, a high-resolution regional coupled model is employed to explore this feedback effect on the long-term dynamical and thermodynamical structure of the ocean.The observed relationship between the near-surface winds and mesoscale SSTs generate Ekman pumping velocities at the scale of the cold filaments, whose magnitude is the order of 1 m/day in both the model and observations. This additional Ekman-driven velocity, induced by the wind-eddy interaction, accounts for approximately 10–20% of oceanic vertical velocity of the cold filaments. This implies that Ekman pumping arising from the mesoscale coupled feedback makes a non-trivial contribution to the vertical structure of the upper ocean and the evolution of mesoscale eddies, with obvious implications for marine ecosystem and biogeochemical variability.Furthermore, SST features associated with cold filaments substantially reduce the latent heat loss. The long-term latent heat flux change due to eddies in the model is approximately 10–15 W/m2 over the cold filaments, which is consistent with previous estimates based on short-term in situ measurements. Given the shallow mixed layer, this additional surface heat flux warms the cold filament at the rate of 0.3–0.4 °C/month over a season with strong eddy activity, and 0.1–0.2 °C/month over the 12-year mean, rendering overall low-frequency modulation of SST feasible. This long-term mixed layer heating by the surface flux is approximately ±10% of the lateral heat flux by the eddies, yet it can be comparable to the vertical heat flux. Potential dynamic and thermodynamic impacts of this observed air–sea interaction on the monsoons and regional climate are yet to be quantified given the strong correlation between the Somalia upwelling SST and the Indian summer monsoons.  相似文献   
563.
Following the discovery of asphalt volcanism in the Campeche Knolls a research cruise was carried out in 2006 to unravel the nature of the asphalt deposits at Chapopote. The novel results support the concept that the asphalt deposits at the seafloor in 3000 m of water depth originate from the seepage of heavy petroleum with a density slightly greater than water. The released petroleum forms characteristic flow structures at the seafloor with surfaces that are ‘ropy’ or ‘rough’ similar to magmatic lava flows. The surface structures indicate that the viscosity of the heavy petroleum rapidly increases after extrusion due to loss of volatiles. Consequently, the heavy petroleum forms the observed asphalt deposit and solidifies. Detailed survey with a remotely operated vehicle revealed that the asphalts are subject to sequential alterations: e.g. volume reduction leading to the formation of visible cracks in the asphalt surface, followed by fragmentation of the entire deposit. While relatively fresh asphalt samples were gooey and sticky, older, fragmented pieces were found to be brittle without residual stickiness. Furthermore, there is evidence for petroleum seepage from below the asphalt deposits, leading to local up-doming and, sometimes, to whip-shaped extrusions. Extensive mapping by TV-guided tools of Chapopote Asphalt Volcano indicates that the main asphalt deposits occur at the south-western rim that borders a central, crater-like depression. The most recent asphalt deposit at Chapopote is the main asphalt field covering an area of ∼2000 m2. Asphalt volcanism is distinct from oil and gas seepage previously described in the Gulf of Mexico and elsewhere because it is characterized by episodic intrusions of semi-solid hydrocarbons that spread laterally over a substantial area and produce structures with significant vertical relief. As Chapopote occurs at the crest of a salt structure it is inferred that asphalt volcanism is a secondary result of salt tectonism.  相似文献   
564.
On 22 April 2009 the European Commission published its ‘Green Paper on the Reform of the Common Fisheries Policy’. The Green Paper points out a contradiction in policy, noting on one hand that public financial support to the Community's fisheries sector is substantial, but on the other hand such support is often incompatible with other Common Fisheries Policy (CFP) objectives, particularly the need to reduce overcapacities. Providing an analytical framework to better understand the effects of subsidies as well as an overview of existing funding schemes under the CFP, this article aims at answering some of the questions posed by the European Commission within its Green Paper. Answers are based on two ideas: the exploitation of marine capture resources ultimately depends on the level of available fish stocks and that a large share of subsidies fuels the race to fish by inducing investment incentives for the fisheries sector. Policies that have ignored this tend to encourage inefficient and unsustainable fishing as well as the misallocation of public funds. Although support schemes under the CFP have changed in recent years, some problematic support schemes persist. A future reform will have to continue the course taken towards sustainable and efficient approaches to supporting the fisheries industry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号