首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   6篇
  国内免费   4篇
测绘学   14篇
大气科学   13篇
地球物理   39篇
地质学   47篇
海洋学   2篇
天文学   35篇
自然地理   11篇
  2022年   3篇
  2021年   7篇
  2020年   4篇
  2019年   5篇
  2018年   8篇
  2017年   4篇
  2016年   11篇
  2015年   10篇
  2014年   11篇
  2013年   8篇
  2012年   14篇
  2011年   8篇
  2010年   1篇
  2009年   14篇
  2008年   3篇
  2007年   2篇
  2006年   3篇
  2005年   2篇
  2004年   8篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
  1996年   4篇
  1994年   1篇
  1993年   2篇
  1991年   3篇
  1990年   2篇
  1989年   4篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
排序方式: 共有161条查询结果,搜索用时 15 毫秒
31.
The Sitno Natura 2000 Site covers an area of 935,56 hectares. The Sitno region is significant due to the number of rare and endangered species of plants, and as a result is considered a location of great importance to the maintenance of floral gene pools. The study area suffers human impacts in the form of tourism. The main purpose of this study is to the measure landscape elements, determine the ecological significance of habitats within the Sitno area, and from this data, organize the study area into conservation zones. The results of this landscape quantification are numerical values that can be used to interpret the quality of ongoing ecological processes within individual landscape types. Interpretation of this quantified data can be used to determine the ecological significance of landscapes in other study areas. This research examines the habitats of Natura 2000 Sites by a set of landscape metrics for habitat area, size, density, and shape, such as Number of patches (NP), Patch density (PD), Mean patch size (MPS), Patch size standard deviation (PSSD) and Mean shape index (MSI). The classification of land cover patches is based on the Annex Code system.  相似文献   
32.
Résumé

Une étude des structures cassantes permet de préciser l’évolution tectonique du Bassin de Vienne, généralement considéré comme un bassin de type « pull apart » typique. Le champ de contrainte ottnangien-carpathien (18,5-16, 5 Ma) est caractérisé par une compression NNW-SSE. Pendant le Badénien-Sannanticn (16,5-11 Ma) une zone cisaillante sénestre de direction NE-SW a été formée dans un régime en compression N-S et extension E-W. En liaison avec cette zone décrochante trois types d’extension locale conduisent à une forte subsidence dans les dépression : extension NE-SW parallèle aux accidents sénestres, extension E-W entre les décrochements et extension NW-SE au-dessus des zones décrochantes profondes. Le champ de contrainte vers la fin du Sannaticn est marqué par une compression ENE-WSW, tandis que celui du Pannonicn- récent est similaire á celui du Miocène moyen.

Une rotation de la paléocontrainte maximale horizontale, de NNW-SSE a ENE-SSW est mise en évidence pendant la période Ottnangien-Sannantien (18,5-11 Ma). Cette rotation est parallèle A celle des directions de mise en place des nappes carpathicnnes externes. L’origine des rotation est l’échappement continental des Alpes orientales et des Carpathes septentrionales vers le NE et son blocage graduel d’Ouest en Est au front des nappes carpathiennes. Après ce blocage, l’échappement a continué avec une faible intensité du Pannonien à l’Actuel. Alors que l’échappement a été initié par une compression N-S due á la collision Europe-promontoire Adriatique, le champ de contrainte à l’intérieur des blocs échappés reflète l’effet de leur blocage au front des nappes carpalhiques.  相似文献   
33.
During the last decades, several integrated studies of Tethyan Jurassic/Cretaceous boundary sections from different countries were published with the objective to indicate problems for the selection of biological, chemical or physical markers suitable for identification of the Jurassic/Cretaceous boundary e the only system boundary within the Phanerozoic still not fixed by GSSP. Drawing the boundary between the Jurassic and Cretaceous systems is a matter of global scale discussions. The problem of proposing possible J/K boundary stratotypes results from lack of a global index fossils, global sea level drop, paleogeographic changes causing development of isolated facies areas, as well as from the effect of Late Cimmerian Orogeny. This contribution summarizes and comments data on J/K boundary interval obtained from several important Tethyan sections and shows still existing problems and discrepancies in its determination.  相似文献   
34.
The Oligo-Miocene Most Basin is the largest preserved sedimentary basin within the Eger Graben, the easternmost part of the European Cenozoic Rift System (ECRIS). The basin is interpreted as a part of an incipient rift system that underwent two distinct phases of extension. The first phase, characterised by NNE–SSW- to N–S-oriented horizontal extension between the end of Eocene and early Miocene, was oblique to the rift axis and caused evolution of a fault system characterised by en-échelon-arranged E–W (ENE–WSW) faults. These faults defined a number of small, shallow initial depocentres of very small subsidence rates that gradually merged during the growth and linkage of the normal fault segments. The youngest part of the basin fill indicates accelerated subsidence caused probably by the concentration of displacement at several major bounding faults. Major post-depositional faulting and forced folding were related to a change in the extension vector to an orthogonal position with respect to the rift axis and overprinting of the E–W faults by an NE–SW normal fault system. The origin of the palaeostress field of the earlier, oblique, extensional phase remains controversial and can be attributed either to the effects of the Alpine lithospheric root or (perhaps more likely because of the dominant volcanism at the onset of Eger Graben formation) to doming due to thermal perturbation of the lithosphere. The later, orthogonal, extensional phase is explained by stretching along the crest of a growing regional-scale anticlinal feature, which supports the recent hypothesis of lithospheric folding in the Alpine–Carpathian foreland.  相似文献   
35.
The surfaces of salt diapirs in the Zagros Mountains are mostly covered by surficial deposits, which significantly affect erosion rates, salt karst evolution, land use and the density of the vegetation cover. Eleven salt diapirs were selected for the study of surficial deposits in order to cover variability in the geology, morphology and climate in a majority of the diapirs in the Zagros Mountains and Persian Gulf Platform. The chemical and mineralogical compositions of 80 selected samples were studied mainly by X-ray powder diffraction and X-ray fluorescence. Changes in salinity along selected vertical profiles were studied together with the halite and gypsum distribution. The subaerial residuum formed from minerals and rock detritus released from the dissolved rock salt is by far the most abundant material on the diapirs. Fluvial sediments derived from this type of residuum are the second most common deposits found, while submarine residuum and marine sediments have only local importance. The mineralogical/chemical composition of surficial deposits varies amongst the three end members: evaporite minerals (gypsum/anhydrite and minor halite), carbonates (dolomite and calcite) and silicates-oxides (mainly quartz, phyllosilicates, and hematite). Based on infiltration tests on different types of surficial deposits, most of the rainwater will infiltrate, while overland flow predominates on rock salt exposures. Recharge concentration and thick accumulations of fine sediment support relatively rich vegetation cover in some places and even enable local agricultural activity. The source material, diapir relief, climatic conditions and vegetation cover were found to be the main factors affecting the development and erosion of surficial deposits. A difference was found in residuum type and landscape morphology between the relatively humid NW part of the studied area and the arid Persian Gulf coast: In the NW, the medium and thick residuum seems to be stable under current climatic conditions. Large sinkholes and blind valleys with sinking streams are common. On other diapirs, the original thick residuum is undergoing erosion and the new morphology is currently represented by salt exposures and badland-like landscapes or by fields of small sinkholes developed in the thin residuum. Models for evolution of the subaerial residuum and the diapir landscape/morphology are described in this paper. While the thick residuum with vegetation has very low erosion rates, the salt exposures and thin residuum are eroded rapidly. During wet periods (e.g. early Holocene), the diapirs rose and salt glaciers expanded as the influx of salt mass was much faster compared to erosion. After the onset of an arid climate, c. 6 ka BP, the rising of the some diapir surfaces decreased or even reversed due to acceleration of erosion thanks to vegetation degradation and changes in the residuum type and thickness.  相似文献   
36.
37.
Two examples of clouds of narrowband dm-spikes, observed by the Ondejov radiospectrograph in the 1–2 GHz frequency range, are analyzed. After transformation of the frequency scales to distances in the solar atmosphere, the power spectra analysis of size scales reveals a spectral index of –5/3, resembling that of Kolmogorov spectra of turbulent cascades. The narrowband dm-spikes are interpreted as radio emission from electrons accelerated in MHD cascading waves, probably generated in plasma outflows from magnetic field reconnection.  相似文献   
38.
39.
If the "11.3 microns" emission feature seen in the spectra of many planetary nebulae, H II regions, and reflection nebulae is due to polycyclic aromatic hydrocarbons (PAHs), then additional features should be present between 11.3 and 13.0 microns (885 and 770 cm-1). Moderate-resolution spectra of NGC 7027, HD 44179, IRAS 21282+5050, and BD + 30 degrees 3639 are presented which show that the "11.3 microns" feature actually peaks at 11.22 microns (891 cm-1). The spectra also show evidence of new emission features near 11.9 and 12.7 microns (840 and 787 cm-1). These are consistent with an origin from PAHs and can be used to constrain the molecular structure of the family of PAHs responsible for the infrared features. The observed asymmetry of the "11.3 microns" band is consistent with the slight anharmonicity expected in the C--H out-of-plane bending mode in PAHs. Laboratory experiments show that the intensity of this mode relative to the higher frequency modes depends on the extent of molecular "clustering." The observed strengths of the "11.3 microns" interstellar bands relative to the higher frequency bands are most consistent with the features originating from free molecular PAHs. The intensity and profile of the underlying broad structure, however, may well arise from PAH clusters and amorphous carbon particles. Analysis of the 11-13 microns (910-770 cm-1) emission suggests that the molecular structures of the most intensity emitting free PAHs vary somewhat between the high-excitation environment in NGC 7027 and the low-excitation but high-flux environment close to HD 44179. Finally, a previously undetected series of regularly spaced features between 10 and 11 microns (1000 and 910 cm-1) in the spectrum of HD 44179 suggests that a simple polyatomic hydride is present in the gas phase in this object.  相似文献   
40.
A brief discussion of the infrared observations from 4 to 20 micrometers of seven comets is presented. The observed infrared emission from comets depends primarily on their heliocentric distance. A model based on grain populations composed of a mixture of silicate and amorphous carbon particles in the mass ratio of about 40 to 1, with a power-law size distribution similar to that inferred for comet Halley, is applied to the observations. The model provides a good match to the observed heliocentric variation of both the 10 micrometers feature and the overall thermal emission from comets West and Halley. Matches to the observations of comet IRAS-Araki-Alcock and the antitail of comet Kohoutek require slightly larger grains. While the model does not match the exact profile and position of the 3.4 micrometers feature discovered in comet Halley, it does produce a qualitative fit to the observed variation of the feature's strength as a function of heliocentric distance. The calculations predict that the continuum under the 3.4 micrometers feature is due primarily to thermal emission from the comet dust when the comet is close to the Sun and to scattered solar radiation at large heliocentric distances, as is observed. A brief discussion of the determination of cometary grain temperatures from the observed infrared emission is presented. It is found that the observed shape of the emission curve from about 4 to 8 micrometers provides the best spectral region for estimating the cometary grain temperature distribution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号