首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   358篇
  免费   29篇
  国内免费   7篇
测绘学   4篇
大气科学   34篇
地球物理   107篇
地质学   120篇
海洋学   30篇
天文学   75篇
综合类   1篇
自然地理   23篇
  2024年   2篇
  2023年   3篇
  2022年   4篇
  2021年   8篇
  2020年   6篇
  2019年   7篇
  2018年   28篇
  2017年   14篇
  2016年   25篇
  2015年   11篇
  2014年   23篇
  2013年   22篇
  2012年   19篇
  2011年   18篇
  2010年   25篇
  2009年   33篇
  2008年   18篇
  2007年   23篇
  2006年   9篇
  2005年   15篇
  2004年   16篇
  2003年   13篇
  2002年   9篇
  2001年   3篇
  2000年   4篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   5篇
  1995年   2篇
  1994年   1篇
  1993年   3篇
  1992年   4篇
  1990年   1篇
  1989年   3篇
  1987年   2篇
  1986年   1篇
  1985年   4篇
  1981年   1篇
  1977年   1篇
  1970年   2篇
排序方式: 共有394条查询结果,搜索用时 15 毫秒
51.
The European Space Agency’s Rosetta spacecraft is the first Solar System mission to include instrumentation capable of measuring planetary thermal fluxes at both near-IR (VIRTIS) and submillimeter–millimeter (smm–mm, MIRO) wavelengths. Its primary mission is a 1 year reconnaissance of Comet 67P/Churyumov–Gerasimenko beginning in 2014. During a 2010 close fly-by of Asteroid 21 Lutetia, the VIRTIS and MIRO instruments provided complementary data that have been analyzed to produce a consistent model of Lutetia’s surface layer thermal and electrical properties, including a physical model of self-heating. VIRTIS dayside measurements provided highly resolved 1 K accuracy surface temperatures that required a low thermal inertia, I < 30 J/(K m2 s0.5). MIRO smm and mm measurements of polar night thermal fluxes produced constraints on Lutetia’s subsurface thermal properties to depths comparable to the seasonal thermal wave, yielding a model of I < 20 J/(K m2 s0.5) in the upper few centimeters, increasing with depth in a manner very similar to that of Earth’s Moon. Subsequent MIRO-based model predictions of the dayside surface temperatures reveal negative offsets of ~5–30 K from the higher VIRTIS-measurements. By adding surface roughness in the form of 50% fractional coverage of hemispherical mini-craters to the MIRO-based thermal model, sufficient self-heating is produced to largely remove the offsets relative to the VIRTIS measurements and also reproduce the thermal limb brightening features (relative to a smooth surface model) seen by VIRTIS. The Lutetia physical property constraints provided by the VIRTIS and MIRO data sets demonstrate the unique diagnostic capabilities of combined infrared and submillimeter/millimeter thermal flux measurements.  相似文献   
52.
Hydrological models are useful tools to analyze present and future conditions of water quantity and quality. The integrated modelling of water and nutrients needs an adequate representation of the different discharge components. In common with many lowlands, groundwater contribution to the discharge in the North German lowlands is a key factor for a reasonable representation of the water balance, especially in low flow periods. Several studies revealed that the widely used Soil and Water Assessment Tool (SWAT) model performs poorly for low flow periods. This paper deals with the extension of the groundwater module of the SWAT model to enhance low flow representation. The current two‐storage concept of SWAT was further developed to a three‐storage concept. This was realized due to modification of the groundwater module by splitting the active groundwater storage into a fast and a slow contributing aquifer. The results of this study show that the groundwater module with three storages leads to a good prediction of the overall discharge especially for the recession limbs and the low flow periods. The improved performance is reflected in the signature measures for the mid‐segment (percent bias ?2.4% vs ?15.9%) and the low segment (percent bias 14.8% vs 46.8%) of the flow duration curve. The three‐storage groundwater module is more process oriented than the original version due to the introduction of a fast and a slow groundwater flow component. The three‐storage version includes a modular approach, because groundwater storages can be activated or deactivated independently for subbasin and hydrological response unit level. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
53.
正1.Introduction The impacts arising from climate change and climate variability pose major challenges to global and regional security and economic prosperity(UNFCCC,2015).Some regions are more at risk than others,through heightened exposure to climatic hazards,and high vulnerability and exposure to such hazards.China,with its rapid economic development,large  相似文献   
54.
55.
Reflection tomography is the industry standard tool for velocity model building, but it is also an ill‐posed inverse problem as its solution is not unique. The usual way to obtain an acceptable result is to regularize tomography by feeding the inversion with some a priori information. The simplest regularization forces the solution to be smooth, implicitly assuming that seismic velocity exhibits some degree of spatial correlation. However, velocity is a rock property; thus, the geometry and structure of rock formations should drive correlation in velocity depth models. This observation calls for constraints driven by geological models. In this work, we present a set of structural constraints that feed reflection tomography with geometrical information. These constraints impose the desired characteristics (flatness, shape, position, etc.) on imaged reflectors but act on the velocity update. Failure to respect the constraints indicates either velocity inaccuracies or wrong assumptions concerning the constraints. Reflection tomography with structural constraints is a flexible framework that can be specialized in order to achieve different goals: among others, to flatten the base of salt bodies or detachment surfaces, to recover the horizontalness of oil–water contacts, or to impose the co‐location of the same imaged horizon between PP and PS images. The straightforward application of structural constraints is that of regularizing tomography through geological information, particularly at the latest stages of the depth imaging workflow, when the depth migration structural setting reached a consistent geological interpretation. Structural constraints are also useful in minimizing the well‐to‐seismic mis‐ties. Moreover, they can be used as a tool to check the consistency of interpreters' hypothesis with seismic data. Indeed, inversion with structural constraints will preserve image focusing only if the interpreters' insights are consistent with the data. Results from synthetic and real data demonstrate the effectiveness of reflection tomography with structural constraints.  相似文献   
56.
Rock glaciers are slowly flowing mixtures of debris and ice occurring in mountains. They can represent a reservoir of water, and melting ice inside them can affect surface water hydrochemistry. Investigating the interactions between rock glaciers and water bodies is therefore necessary to better understand these mechanisms. With this goal, we elucidate the hydrology and structural setting of a rock glacier–marginal pond system, providing new insights into the mechanisms linking active rock glaciers and impounded surface waters. This was achieved through the integration of waterborne geophysical techniques (ground penetrating radar, electrical resistivity tomography and self‐potentials) and heat tracing. Results of these surveys showed that rock glacier advance has progressively filled the valley depression where the pond is located, creating a dam that could have modified the level of impounded water. A sub‐surface hydrological window connecting the rock glacier to the pond was also detected, where an inflow of cold and mineralised underground waters from the rock glacier was observed. Here, greater water contribution from the rock glacier occurred following intense precipitation events during the ice‐free season, with concomitant increasing electrical conductivity values. The outflowing dynamic of the pond is dominated by a sub‐surface seepage where a minor fault zone in bedrock was found, characterised by altered and highly‐fractured rocks. The applied approach is evaluated here as a suitable technique for investigating logistically‐complex hydrological settings which could be possibly transferred to wider scales of investigation. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
57.
The response of the San Pietro monumental bell-tower located in Perugia, Italy, to the 2016 Central Italy seismic sequence is investigated, taking advantage of the availability of field data recorded by a vibration-based SHM system installed in December 2014 to detect earthquake-induced damages. The tower is located about 85 km in the NW direction from the epicenter of the first major shock of the sequence, the Accumoli Mw6.0 earthquake of August 24th, resulting in a small local PGA of about 30 cm/s2, whereby near-field PGA was measured as 915.97 cm/s2 (E–W component) and 445.59 cm/s2 (N–S component). Similar PGA values also characterized the two other major shocks of the sequence (Ussita Mw5.9 and Norcia Mw6.5 earthquakes of October 26th and 30th, respectively). Despite the relatively low intensity of such earthquakes in Perugia, the analysis of long-term monitoring data clearly highlights that small permanent changes in the structural behavior of the bell-tower have occurred after the earthquakes, with decreases in all identified natural frequencies. Such natural frequency decays are fully consistent with what predicted by non-linear finite element simulations and, in particular, with the development of microcracks at the base of the columns of the belfry. Microcracks in these regions, and in the rest of tower, are however hardly distinguishable from pre-existing ones and from the physiological cracking of a masonry structure, what validates the effectiveness of the SHM system in detecting earthquake-induced damage at a stage where this is not yet detectable by visual inspections.  相似文献   
58.
Real-time integration of multi-parametric observations is expected to accelerate the process toward improved, and operationally more effective, systems for time-Dependent Assessment of Seismic Hazard (t-DASH) and earthquake short-term (from days to weeks) forecast. However, a very preliminary step in this direction is the identification of those parameters (chemical, physical, biological, etc.) whose anomalous variations can be, to some extent, associated with the complex process of preparation for major earthquakes. In this paper one of these parameters (the Earth’s emitted radiation in the Thermal InfraRed spectral region) is considered for its possible correlation with M ≥ 4 earthquakes occurred in Greece in between 2004 and 2013. The Robust Satellite Technique (RST) data analysis approach and Robust Estimator of TIR Anomalies (RETIRA) index were used to preliminarily define, and then to identify, significant sequences of TIR anomalies (SSTAs) in 10 years (2004–2013) of daily TIR images acquired by the Spinning Enhanced Visible and Infrared Imager on board the Meteosat Second Generation satellite. Taking into account the physical models proposed for justifying the existence of a correlation among TIR anomalies and earthquake occurrences, specific validation rules (in line with the ones used by the Collaboratory for the Study of Earthquake Predictability—CSEP—Project) have been defined to drive a retrospective correlation analysis process. The analysis shows that more than 93 % of all identified SSTAs occur in the prefixed space–time window around (M ≥ 4) earthquake's time and location of occurrence with a false positive rate smaller than 7 %. Molchan error diagram analysis shows that such a correlation is far to be achievable by chance notwithstanding the huge amount of missed events due to frequent space/time data gaps produced by the presence of clouds over the scene. Achieved results, and particularly the very low rate of false positives registered on a so long testing period, seems already sufficient (at least) to qualify TIR anomalies (identified by RST approach and RETIRA index) among the parameters to be considered in the framework of a multi-parametric approach to t-DASH.  相似文献   
59.
60.
This work addresses the temporal dynamics of riparian vegetation in large braided rivers, exploring the relationship between vegetation erosion and flood magnitude. In particular, it investigates the existence of a threshold discharge, or a range of discharges, above which erosion of vegetated patches within the channel occurs. The research was conducted on a 14 km long reach of the Tagliamento River, a braided river in north‐eastern Italy. Ten sets of aerial photographs were used to investigate vegetation dynamics in the period 1954–2011. By using different geographic information system (GIS) procedures, three aspects of geomorphic‐vegetation dynamics and interactions were addressed: (i) long‐term (1954–2011) channel evolution and vegetation dynamics; (ii) the relationship between vegetation erosion/establishment and flow regime; (iii) vegetation turnover, in the period 1986–2011. Results show that vegetation turnover is remarkably rapid in the study reach with 50% of in‐channel vegetation persisting for less than 5–6 years and only 10% of vegetation persisting for more than 18–19 years. The analysis shows that significant vegetation erosion is determined by relatively frequent floods, i.e. floods with a recurrence interval of c. 1–2.5 years, although some differences exist between sub‐reaches with different densities of vegetation cover. These findings suggest that the erosion of riparian vegetation in braided rivers may not be controlled solely by very large floods, as is the case for lower energy gravel‐bed rivers. Besides flow regime, other factors seem to play a significant role for in‐channel vegetation cover over long time spans. In particular, erosion of marginal vegetation, which supplies large wood elements to the channel, increased notably over the study period and was an important factor for in‐channel vegetation trends. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号