首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   722篇
  免费   31篇
  国内免费   3篇
测绘学   57篇
大气科学   67篇
地球物理   171篇
地质学   233篇
海洋学   27篇
天文学   122篇
综合类   5篇
自然地理   74篇
  2023年   5篇
  2022年   5篇
  2021年   14篇
  2020年   12篇
  2019年   21篇
  2018年   23篇
  2017年   22篇
  2016年   33篇
  2015年   29篇
  2014年   28篇
  2013年   65篇
  2012年   38篇
  2011年   25篇
  2010年   29篇
  2009年   44篇
  2008年   26篇
  2007年   32篇
  2006年   22篇
  2005年   34篇
  2004年   23篇
  2003年   21篇
  2002年   25篇
  2001年   18篇
  2000年   16篇
  1999年   12篇
  1998年   7篇
  1997年   8篇
  1996年   7篇
  1995年   7篇
  1994年   5篇
  1993年   5篇
  1991年   5篇
  1990年   5篇
  1989年   3篇
  1987年   6篇
  1984年   6篇
  1982年   3篇
  1980年   6篇
  1979年   5篇
  1978年   5篇
  1977年   3篇
  1973年   3篇
  1972年   3篇
  1963年   2篇
  1961年   2篇
  1958年   5篇
  1955年   3篇
  1954年   4篇
  1950年   2篇
  1921年   2篇
排序方式: 共有756条查询结果,搜索用时 187 毫秒
751.
In contrast to I-type granites, which commonly comprise infracrustal and supracrustal sources, S-type granites typically incorporate predominantly supracrustal sources. The initial aim of this study was to identify the sources of three Scottish Caledonian (~460 Ma) S-type granites (Kemnay, Cove and Nigg Bay) by conducting oxygen, U–Pb and Hf isotope analyses in zircon in order to characterise one potential end-member magma involved in the genesis of the voluminous late Caledonian (~430–400 Ma) I-type granites. Field, whole-rock geochemical and isotopic data are consistent with the generation of the S-type granites by melting their Dalradian Supergroup country rocks. While Hf isotope compositions of magmatic zircon, U–Pb data of inherited zircons, and high mean zircon δ18O values of 9.0 ± 2.7‰ (2SD) and 9.8 ± 2.0‰ for the Kemnay and Cove granites support this model, the Nigg Bay Granite contains zircons with much lower δ18O values (6.8 ± 2.1‰), similar to those found in Scottish I-type granites. This suggests that the Nigg Bay Granite contains low-δ18O material representing either altered supracrustal material, or more likely, an infracrustal source component with mantle-like δ18O. Mixing trends in plots of δ18O vs. εHf for S-type granite zircons indicate involvement of at least two sources in all three granites. This pilot study of Scottish Caledonian S-type granites demonstrates that, while field and whole-rock geochemical data are consistent with local melting of only supracrustal sources, the oxygen isotopic record stored in zircon reveals a much more complex petrogenetic evolution involving two or more magma sources.  相似文献   
752.
Silicon isotope ratios (δ30Si) of bulk mineral materials in soil integrate effects from both silicon sources and processing. Here we report δ30Si values from a climate gradient of Hawaiian soils developed on 170 ka basalt and relate them to patterns of soil chemistry and mineralogy. The results demonstrate informative relationships between the mass fraction of soil Si depletion and δ30Si. In upper (<1 m deep) soil horizons along the climate gradient, Si depletion correlates with decreases of residual δ30Si values in low rainfall soils and increases in high rainfall soils. Strong positive correlation between soil δ30Si and dust-derived quartz and mica content show that both trends are largely controlled by the abundance of these weathering-resistant minerals. The data also lend support to the idea that fractionation of Si isotopes in secondary phases is controlled by partitioning of silicon between dissolved and precipitated products during the initial weathering of primary basalt. Secondary mineral δ30Si values from lower (>1 m deep) soil horizons generally correlate with the isotope fractionation predicted by a study of dissolved Si in basalt-watershed rivers and driven by preferential 28Si removal from the dissolved phase during precipitation. In contrast, after correcting for the influence of dust, secondary mineral Si depletion and δ30Si values in shallow (<1 m deep) soil horizons showed evidence of biocycling induced Si redistribution and substantially lower δ30Si values than predicted. Low δ30Si values in shallow soil horizons compared to predictions can be attributed to repeated fractionation as secondary minerals undergo additional cycles of dissolution and precipitation. Primary mineral weathering, secondary mineral weathering, dust accumulation, and biocycling are major processes in terrestrial Si cycling and these results demonstrate that each can be traced by δ30Si values interpreted in conjunction with mineralogy and measures of Si depletion.  相似文献   
753.
The high field strength elements (HFSE: Zr, Hf, Nb, Ta, and W) are an important group of chemical tracers that are increasingly used to investigate magmatic differentiation processes. Successful modeling of these processes requires the availability of accurate mineral-melt partition coefficients (D). To date, these have largely been determined by ion microprobe or laser ablation-ICP-MS analyses of the run products of high-pressure, high-temperature experiments. Since HFSE are (highly) incompatible, relatively immobile, high-charge, and difficult to ionize, these experiments and their analysis are challenging. Here we explore whether high-precision analyses of natural mineral-melt systems can provide additional constraints on HFSE partitioning.The HFSE concentrations in natural garnet and amphibole and their alkaline host melt from Kakanui, New Zealand are determined with high precision isotope dilution on a multi-collector-ICP-MS. Major and trace element compositions combined with Lu-Hf isotopic systematics and detailed petrographic sample analysis are used to assess mineral-melt equilibrium and to provide context for the HFSE D measurements. The whole-rock nephelinite, ∼1 mm sized amphiboles in the nephelinite, and garnet megacrysts have similar initial Hf isotope ratios with a mean initial 176Hf/177Hf(34 Ma) = 0.282900 ± 0.000026 (2σ). In contrast, the amphibole megacrysts are isotopically distinct (176Hf/177Hf(34 Ma) = 0.282830 ± 0.000011). Rare earth element D values for garnet megacryst-nephelinite melt and ∼1 mm amphibole-nephelinite melt plotted as a function of ionic radii show classic near-parabolic trends that are in excellent agreement with crystal lattice-strain models. These observations are consistent with equilibrium between the whole-rock nephelinite, the ∼1 mm amphibole grains within the nephelinite and the garnet megacrysts.High-precision isotope dilution results for Zr and Hf in garnet (DZr = 0.220 ± 0.007 and DHf = 0.216 ± 0.005 [2σ]), and for all HFSE in amphibole are consistent with previous experimental findings. However, our measurements for Nb and Ta in garnet (DNb = 0.0007 ± 0.0001 and DTa = 0.0011 ± 0.0006 [2σ]) show that conventional methods may overestimate Nb and Ta concentrations, thereby overestimating both Nb and Ta absolute D values for garnet by up to 3 orders of magnitude and underestimating DNb/DTa by greater than a factor of 100. As a consequence, the role of residual garnet in imposing Nb/Ta fractionation may be less important than previously thought. Moreover, garnet DHf/DW = 17 and DNb/DZr = 0.003 imply fractionation of Hf from W and Nb from Zr upon garnet crystallization, which may have influenced short-lived 182Hf-182W and 92Nb-92Zr isotopic systems in Hadean time.  相似文献   
754.
The pterodactyloid genus Germanodactylus is relatively poorly known. Two species have been described, although it has been recently suggested (Wang et al., 2008) that they might pertain to different genera.  相似文献   
755.
The ensemble Kalman filter has been successfully applied for data assimilation in very large models, including those in reservoir simulation and weather. Two problems become critical in a standard implementation of the ensemble Kalman filter, however, when the ensemble size is small. The first is that the ensemble approximation to cross-covariances of model and state variables to data can indicate the presence of correlations that are not real. These spurious correlations give rise to model or state variable updates in regions that should not be updated. The second problem is that the number of degrees of freedom in the ensemble is only as large as the size of the ensemble, so the assimilation of large amounts of precise, independent data is impossible. Localization of the Kalman gain is almost universal in the weather community, but applications of localization for the ensemble Kalman filter in porous media flow have been somewhat rare. It has been shown, however, that localization of updates to regions of non-zero sensitivity or regions of non-zero cross-covariance improves the performance of the EnKF when the ensemble size is small. Localization is necessary for assimilation of large amounts of independent data. The problem is to define appropriate localization functions for different types of data and different types of variables. We show that the knowledge of sensitivity alone is not sufficient for determination of the region of localization. The region depends also on the prior covariance for model variables and on the past history of data assimilation. Although the goal is to choose localization functions that are large enough to include the true region of non-zero cross-covariance, for EnKF applications, the choice of localization function needs to balance the harm done by spurious covariance resulting from small ensembles and the harm done by excluding real correlations. In this paper, we focus on the distance-based localization and provide insights for choosing suitable localization functions for data assimilation in multiphase flow problems. In practice, we conclude that it is reasonable to choose localization functions based on well patterns, that localization function should be larger than regions of non-zero sensitivity and should extend beyond a single well pattern.  相似文献   
756.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号