首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2865篇
  免费   82篇
  国内免费   101篇
测绘学   274篇
大气科学   264篇
地球物理   510篇
地质学   1439篇
海洋学   131篇
天文学   321篇
综合类   52篇
自然地理   57篇
  2023年   16篇
  2022年   58篇
  2021年   62篇
  2020年   68篇
  2019年   73篇
  2018年   259篇
  2017年   238篇
  2016年   218篇
  2015年   140篇
  2014年   192篇
  2013年   266篇
  2012年   166篇
  2011年   165篇
  2010年   142篇
  2009年   143篇
  2008年   122篇
  2007年   76篇
  2006年   78篇
  2005年   53篇
  2004年   43篇
  2003年   36篇
  2002年   25篇
  2001年   26篇
  2000年   32篇
  1999年   28篇
  1998年   20篇
  1997年   16篇
  1996年   9篇
  1995年   11篇
  1994年   19篇
  1993年   13篇
  1992年   7篇
  1991年   26篇
  1990年   19篇
  1989年   16篇
  1988年   10篇
  1987年   19篇
  1986年   15篇
  1985年   16篇
  1984年   13篇
  1983年   6篇
  1982年   6篇
  1979年   8篇
  1978年   5篇
  1975年   6篇
  1974年   11篇
  1973年   5篇
  1972年   8篇
  1971年   8篇
  1969年   5篇
排序方式: 共有3048条查询结果,搜索用时 78 毫秒
81.
The Yanjiagou deposit, located in the central North China Craton (NCC), is a newly found porphyry‐type Mo deposit. The Mo mineralization here is spatially associated with the Mapeng batholith. In this study, we identify four stages of ore formation in this deposit: pyrite phyllic stage (I), quartz–pyrite stage (II), quartz–pyrite–molybdenite stage (III), which is the main mineralization stage, and quartz–carbonate stage (IV). We present sulphur and lead isotope data on pyrite, and rhenium and osmium isotopes of molybdenite from the porphyry deposit and evaluate the timing and origin of ore formation. The δ34S values of the pyrite range from ‐1.1‰ to −0.6‰, with an average of −0.875‰, suggesting origin from a mixture of magmatic/mantle sources and the basement rocks. The Pb isotope compositions of the pyrite show a range of 16.369 to 17.079 for 206Pb/204Pb, 15.201 to 15.355 for 207Pb/204Pb, and 36.696 to 37.380 for 208Pb/204Pb, indicating that the ore‐forming materials were derived from a mixture of lower crust (or basement rocks) and mantle. Rhenium contents in molybdenite samples from the main ore stage are between 74.73 to 254.43 ppm, with an average of 147.9 ppm, indicating a mixed crustal‐mantle source for the metal. Eight molybdenite separates yield model ages ranging from 124.17 to 130.80 Ma and a mean model age of 128.46 Ma. An isochron age of 126.7 ± 1.1 Ma (MSWD = 2.1, initial 187Os = 0.0032 ± 0.0012 ppb) is computed, which reveals a close link between the Mo mineralization and the magmatism that generated the Mapeng batholith. The age is close to the zircon U–Pb age of ca. 130 Ma from the batholith reported in a recent study. The age is also consistent with the timing of mineralization in the Fuping ore cluster in the central NCC, as well as the peak time of lithosphere thinning and destruction of the NCC. We evaluate the spatio‐temporal distribution of the Mo deposits in the NCC and identify three important molybdenum provinces along the northern and southern margins of the craton formed during three distinct episodes: Middle to Late Triassic (240–220 Ma), Early Jurassic (190–175 Ma), and Late Jurassic to Early Cretaceous (150–125 Ma). The third period is considered to mark the most important metallogenic event, coinciding with the peak of lithosphere thinning and craton destruction in the NCC. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
82.
83.
The sustainable development and management of groundwater resource needs quantitative assessment, based on scientific principle and recent techniques. In the present study, groundwater potential zone is being determined using remote sensing, Geographical Information System (GIS) and Multi-Criteria Decision Analysis (MCDA) techniques using various thematic layers viz. geomorphology, geology, drainage density, slope, rainfall, soil texture, groundwater depth, soil depth, lineament and land use/ land cover. The Analytic Hierarchy Approach (AHP) is used to determine the weights of various themes for identifying the groundwater potential zone based on weights assignment and normalization with respect to the relative contribution of the different themes to groundwater occurrence. Finally, obtained groundwater potential zones were classified into five categories, viz. low, medium, medium-high, high and very high potential zone. The result depicts the groundwater potential zone in the study area and found to be helpful in better development and management planning of groundwater resource.  相似文献   
84.
In opencast mining operation, the stability of waste materials stands at high priority from the safety and economic perspective. Poor management of overburden (OB) dump results the instability of slope in an opencast mine. The present paper deals with the stability analysis of dump material of an opencast coal mine at Talcher coal field, Angul district, Odisha, by means of different geotechnical parameters and mineralogical composition affecting the dump slope. The prolonged rainfall in the mining area causes dump failure and loss of valuable life and property. A recent dump failure that occurred in 2013 at Basundhara mines of Mahanadi Coalfields Limited (MCL), Odisha, took 14 lives, and created problems for the mining industry. Most of the dump failure that occurs in the study area are mainly due to increase in pore water pressure as a result of rainfall infiltration. The stability of the waste dump was investigated using the limit equilibrium analysis to suggest an economical, sustainable and safe disposal of the dump in the study area.  相似文献   
85.
Understanding the causes of slope development with movement initiation of land sliding requires knowledge on dynamicity, displacement, strain concentration and factor of safety. The 13th mile landslide on Gangtok-Nathula road of the Sikkim Himalaya has seriously affected the Indo-China trade route. To quantify the spatial movement pattern, strain analysis and identification of zones of safety were attempted which indicates that differential movement activity of the landslide zone is co-relatable with differential strain pattern with an overall imprint of the Himalaya collision tectonics.  相似文献   
86.
A vast area between Phalodi in Jodhpur and Pokaran in Jaisalmer district of western Rajasthan, is occupied distinctly by rocky, shallow gravelly surfaces and occasional hills. These surfaces exhibit quartz and quartzite pebbles, angular, sub-angular and few rounded sandstone gravels, have slightly convex outline and can be best described as desert pavements. Such land features assume significance because of their extent and variability under a dominantly dry aeolian environment. Morphology and distributional pattern of such formations indicate that sediments are either of in situ origin or may have been transported to a short distance. The present study is based on field level assessment of such surfaces in the above two desert districts. Over much of the area, the profile shows a surficial concentration of gravels followed by thick sand and silt mixed with gravels and then the parent material. There are also occasional rock outcrops of very low relief exhibiting vertical, horizontal and conchoidal pattern of fractures over these surfaces near Pokaran and north of Jaisalmer which indicate disintegration of rocks under extreme diurnal fluctuation of temperature. Such manifestations in the morphology indicate impact of both thermal as well as aeolian processes. In the east of Jaisalmer town near Basanpir and Bhojka, the pavement surfaces are found covered with abundant sub-rounded to rounded pebbles and cobbles. This type of condition would indicate a profound action by fluvial activities followed by wind sorting. Our study found significant spatial variability in the distribution of pavement surfaces, which carried imprints of climatic fluctuations and environment of deposition during Holocene.  相似文献   
87.
We compare the P-, S- and Lg- spectra of the 11th May, 1998 Pokhran underground nuclear explosion (NE) with those of an earthquake (EQ) of comparable magnitude that occurred in its vicinity (~100 km west) on 9th April, 2009, utilizing the waveforms recorded by a Global Seismograph Network station at Nilore (NIL), Pakistan. The contiguous occurrence of these events and the similarity of the travel paths provided a good opportunity to discriminate the nature of the sources. Our results suggest that the Pn/Lg and Pn/Sn amplitude ratios of the explosion and earthquake waveforms exhibit distinct differences in the higher frequency window. Further, since the P-phases have high signal to noise ratio compared to their S counterparts, we utilize their spectra to derive the source parameters of the NE and EQ sources. Our results show that the seismic moment, corner frequency and source dimension of the explosion are ~1.58X1017 Nm, 1.18 Hz and ~0.793 km respectively. The moment magnitude (MW) and surface wave magnitude (MS) for the nuclear explosion are estimated to be ~5.4 and ~3.57 respectively. The values of MW (5.3) and MS (4.3) obtained by us for the earthquake are consistent with the estimates in the Harvard catalog and earlier published results. The estimate of MW for the nuclear explosion was hitherto not available. Lastly, we estimate the yield of the NE to be ~50 kt from the surface wave magnitude and discuss the various limitations related to its estimation.  相似文献   
88.
Felsic magmatism in the southern part of Himachal Higher Himalaya is constituted by Neoproterozoic granite gneiss (GGn), Early Palaeozoic granitoids (EPG) and Tertiary tourmaline-bearing leucogranite (TLg). Magnetic susceptibility values (<3 ×10?3 SI), molar Al2 O 3/(CaO + Na2 O + K 2O) (≥1.1), mineral assemblage (bt–ms–pl–kf–qtz ± tur ± ap), and the presence of normative corundum relate these granitoids to peraluminous S-type, ilmenite series (reduced type) granites formed in a syncollisional tectonic setting. Plagioclase from GGn (An10–An31) and EPG (An15–An33) represents oligoclase to andesine and TLg (An2–An15) represents albite to oligoclase, whereas compositional ranges of K-feldspar are more-or-less similar (Or88 to Or95 in GGn, Or86 to Or97 in EPG and Or87 to Or94 in TLg). Biotites in GGn (Mg/Mg + Fet= 0.34–0.45), EPG (Mg/Mg + Fet= 0.27–0.47), and TLg (Mg/Mg + Fet= 0.25–0.30) are ferribiotites enriched in siderophyllite, which stabilised between FMQ and HM buffers and are characterised by dominant 3Fe\(\rightleftharpoons \)2Al, 3Mg\(\rightleftharpoons \)2Al substitutions typical of peraluminous (S-type), reducing felsic melts. Muscovite in GGn (Mg/Mg + Fet=0.58–0.66), EPG (Mg/Mg + Fet=0.31?0.59), and TLg (Mg/Mg + Fet=0.29–0.42) represent celadonite and paragonite solid solutions, and the tourmaline from EPG and TLg belongs to the schorl-elbaite series, which are characteristics of peraluminous, Li-poor, biotite-tourmaline granites. Geochemical features reveal that the GGn and EPG precursor melts were most likely derived from melting of biotite-rich metapelite and metagraywacke sources, whereas TLg melt appears to have formed from biotite-muscovite rich metapelite and metagraywacke sources. Major and trace elements modelling suggest that the GGn, EPG and TLg parental melts have experienced low degrees (~13, ~17 and ~13%, respectively) of kf–pl–bt fractionation, respectively, subsequent to partial melting. The GGn and EPG melts are the results of a pre-Himalayan, syn-collisional Pan-African felsic magmatic event, whereas the TLg is a magmatic product of Himalayan collision tectonics.  相似文献   
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号