首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   1篇
测绘学   2篇
大气科学   1篇
地球物理   18篇
地质学   8篇
海洋学   7篇
天文学   15篇
自然地理   1篇
  2023年   1篇
  2022年   1篇
  2020年   1篇
  2018年   4篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   8篇
  2007年   2篇
  2006年   2篇
  2003年   1篇
  2001年   3篇
  2000年   3篇
  1998年   3篇
  1997年   1篇
  1996年   6篇
  1995年   1篇
  1994年   1篇
  1986年   1篇
  1985年   1篇
  1978年   2篇
  1976年   1篇
排序方式: 共有52条查询结果,搜索用时 546 毫秒
41.
On the basis of observations using Cs‐corrected STEM, we identified three types of surface modification probably formed by space weathering on the surfaces of Itokawa particles. They are (1) redeposition rims (2–3 nm), (2) composite rims (30–60 nm), and (3) composite vesicular rims (60–80 nm). These rims are characterized by a combination of three zones. Zone I occupies the outermost part of the surface modification, which contains elements that are not included in the unchanged substrate minerals, suggesting that this zone is composed of sputter deposits and/or impact vapor deposits originating from the surrounding minerals. Redeposition rims are composed only of Zone I and directly attaches to the unchanged minerals (Zone III). Zone I of composite and composite vesicular rims often contains nanophase (Fe,Mg)S. The composite rims and the composite vesicular rims have a two‐layered structure: a combination of Zone I and Zone II, below which Zone III exists. Zone II is the partially amorphized zone. Zone II of ferromagnesian silicates contains abundant nanophase Fe. Radiation‐induced segregation and in situ reduction are the most plausible mechanisms to form nanophase Fe in Zone II. Their lattice fringes indicate that they contain metallic iron, which probably causes the reddening of the reflectance spectra of Itokawa. Zone II of the composite vesicular rims contains vesicles. The vesicles in Zone II were probably formed by segregation of solar wind He implanted in this zone. The textures strongly suggest that solar wind irradiation damage and implantation are the major causes of surface modification and space weathering on Itokawa.  相似文献   
42.
The ability to degraden-paraffin mixture of two bacterial strains,Caulobacter sp. andFlavobacterium sp., isolated from sea water of Tokyo Bay was studied experimentally in the enriched seawater (ESW) medium. These bacteria degraded actively the mixture ofn-tridecane,n-tetradecane,n-pentadecane andn-hexadecane. The maximum rate of degradation was observed after a lag period of 2 to 8 day and these bacteria were found to degrade then-paraffin mixture at rates calculated to be in a range from 3.3×10?12 to 3.4×10?11 mg-oil cell?1 h?1 at 20°C. The maximum degradation rate,r m mg-oil l?1 h?1, was correlated with the amount of the initial totaln-paraffin,S mg-oil l?1, as expressed by the following equation: $$rm = (rm)\max \left( {\frac{S}{{S + Km}}} \right)$$ where (r m )max denotes the largest value ofr m whenn-paraffin exists in large excess andK m is a constant and represents the amount ofn-paraffin at which the degradation rate,r m , reaches 1/2 of its largest value, (r m )max. The values of (r m )max andK m were calculated to be as follows: In the case ofCaulobacter sp. (strain KM-1), (r m )max=6.0 mg-oil l?1 h?1 andK m =191 mg-oillesw ?1; in the case ofFlavobacterium sp., (r m )max=5.47 mg-oil l?1 h?1 andK m =152 mg-oillesw ?1.  相似文献   
43.
In order to systematically and visually understand well-known but qualitative and complex relationships between synoptic fields and heavy rainfall events in Kyushu Islands, southwestern Japan, during the BAIU season, these synoptic fields were classified using the Self-Organizing Map (SOM), which can convert complex non-linear features into simple two-dimensional relationships. It was assumed that the synoptic field patterns could be simply expressed by the spatial distribution of (1) wind components at the 850 hPa level and (2) precipitable water (PW) defined by the water vapor amount contained in a vertical column of the atmosphere. By the SOM algorithm and the clustering techniques of the U-matrix and the K-means, the synoptic fields could be divided into eight kinds of patterns (clusters). One of the clusters has the notable spatial features represented by a large PW content accompanied by strong wind components known as low-level jet (LLJ). The features of this cluster indicate a typical synoptic field pattern that frequently causes heavy rainfall in Kyushu during the rainy season.In addition, an independent data set was used for validating the performance of the trained SOM. The results indicated that the SOM could successfully extract heavy rainfall events related to typical synoptic field patterns of the BAIU season. Interestingly, one specific SOM unit was closely related to the occurrence of disastrous heavy rainfall events observed during both training and validation periods. From these results, the trained SOM showed good performance for identifying synoptic fields causing heavy rainfall also in the validation period. We conclude that the SOM technique may be an effective tool for classifying complicated non-linear synoptic fields and identifying heavy rainfall events to some degree.  相似文献   
44.
Geothermal reservoirs are usually located at a depth range of 2 to 5 km, so to efficiently utilize such resources an advanced prospecting method is needed to detect these deep geologic structures. This study aimed to three-dimensionally characterize geothermal reservoirs by a combination of Magnetotelluric (MT) survey, inversion analysis of apparent resistivity, and interpolation of the resistivity data obtained. The western side of Mt. Aso crater, southwest Japan, was chosen as the case study area. Three hot springs exist there and a fault is assumed to go in the direction connecting them. A MT survey was carried out at 26 sites and the data processed by a remote reference method to reduce artificial noises. Based on skewness and Mohr circle analyses of the impedance tensor, the local geologic structure at each site could be approximated as horizontally layered and therefore, a one-dimensional inversion analysis was applied to the MT raw data. The resultant resistivity column data were then interpolated by the three-dimensional optimization principle method. The resistivity distributions obtained clarified continuous conductors with especially low resistivity (less than 10 Ω·m) at the hot springs along the fault. Because the resistivity decreases largely with an abundance of clay minerals, the conductors could be considered to correspond with the cap rocks. Thus, two geothermal reservoirs, whose shapes were estimated to be pillar, were detected under the cap rocks in an elevation range of − 1000 to − 3000 m. By comparing the resistivity distributions with the temperature distributions based on fluid-flow calculations at a steady state using FEM, the validity of the location and dimension of the estimated reservoirs were confirmed.  相似文献   
45.
Watari  Shinichi  Watanabe  Takashi 《Solar physics》1998,180(1-2):427-438
A giant post-flare arch observed on 2-3 November 1991 was analyzed using the soft X-ray telescope (SXT) on board Yohkoh and the Mark III (MK3) K-coronameter at the High Altitude Observatory/Mauna Loa Solar Observatory. The rising arch was observed in both soft X-ray and K-corona observations. The estimated rising speed from the MK3 observation was approximately 4 km s-1. A V-shaped depression area was observed on the south side of the giant arch. Change in the K-corona observations was faint while the arch was rising. According to the solar wind observations by the Pioneer Venus Orbiter and the Interplanetary Cometary Explorer, this giant arch event may have been associated with an interplanetary shock.  相似文献   
46.
A useful index for estimating the transit speeds was derived by analyzing interplanetary shock observations. This index is the ratio of the in situ local shock speed and the transit speed; it is 0.6–0.9 for most observed shocks. The local shock speed and the transit speed calculated for the results of the magnetohydrodynamic simulation show good agreement with the observations. The relation expressed by the index is well explained by a simplified propagation model assuming a blast wave. For several shocks the ratio is approximately 1.2, implying that these shocks accelerated during propagation in slow-speed solar wind. This ratio is similar to that for the background solar wind acceleration.  相似文献   
47.
The thermal expansion of tephroite (Mn2SiO4) at temperatures between 25 and 850°C has been determined by a dilatometric technique. The analysis of data in terms of Grüneisen's theory yields the Grüneisen's parameter γ=1.04, and the pressure derivative of rigidity (?G/?P)=0.7.  相似文献   
48.
The 1st crater of Naka-dake, Aso volcano, is one of the most active craters in Japan, and known to have a characteristic cycle of activity that consists of the formation of a crater lake, drying-up of the lake water, and finally a Strombolian-type eruption. Recent observations indicate an increase in eruptive activity including a decrease in the level of the lake water, mud eruptions, and red hot glows on the crater wall. Temporal variations in the geomagnetic field observed around the craters of Naka-dake also indicate that thermal demagnetization of the subsurface rocks has been occurring in shallow subsurface areas around the 1st crater. Volcanic explosions act to release the energy transferred from magma or volcanic fluids. Measurement of the subsurface electrical resistivity is a promising method in investigating the shallow structure of the volcanic edifices, where energy from various sources accumulates, and in investigating the behaviors of magma and volcanic fluids. We carried out audio-frequency magnetotelluric surveys around the craters of Naka-dake in 2004 and 2005 to determine the detailed electrical structure down to a depth of around 1 km. The main objective of this study is to identify the specific subsurface structure that acts to store energy as a preparation zone for volcanic eruption. Two-dimensional inversions were applied to four profiles across the craters, revealing a strongly conductive zone at several hundred meters depth beneath the 1st crater and surrounding area. In contrast, we found no such remarkable conductor at shallow depths beneath the 4th crater, which has been inactive for 70 years, finding instead a relatively resistive body. The distribution of the rotational invariant of the magnetotelluric impedance tensor is consistent with the inversion results. This unusual shallow structure probably reflects the existence of a supply path of high-temperature volcanic gases to the crater bottom. We propose that the upper part of the conductor identified beneath the 1st crater is mainly composed of hydrothermally altered zone that acts both as a cap to upwelling fluids supplied from deep-level magma and as a floor to infiltrating fluid from the crater lake. The relatively resistive body found beneath the 4th crater represents consolidated magma. These results suggest that the shallow conductor beneath the active crater is closely related to a component of the mechanism that controls volcanic activity within Naka-dake.  相似文献   
49.
The response of the equatorial electrojet (EEJ) to solar eclipses is studied in this work. We analyzed the magnetic field measurements obtained by three satellites, CHAMP, SAC-C and Ørsted and correlated them with ground-based observations during the eclipses. The observations show a local weakening of the EEJ after the shadow passed the dip equator. The size of the effect is, however, comparable with the day-to-day variability. In four out of five events we found the formation of a counter electrojet in the wake of the eclipse. We propose that the depression of the EEJ during an eclipse favors the formation of a counter electrojet.  相似文献   
50.
The field-aligned neutral oscillations in the F-region (altitudes between 165 and 275 km) were compared using data obtained simultaneously with two independent instruments: the European Incoherent Scatter (EISCAT) UHF radar and a scanning Fabry-Perot interferometer (FPI). During the night of February 8, 1997, simultaneous observations with these instruments were conducted at Tromsø, Norway. Theoretically, the field-aligned neutral wind velocity can be obtained from the field-aligned ion velocity and by diffusion and ambipolar diffusion velocities. We thus derived field-aligned neutral wind velocities from the plasma velocities in EISCAT radar data. They were compared with those observed with the FPI (=630.0 nm), which are assumed to be weighted height averages of the actual neutral wind. The weighting function is the normalized height dependent emission rate. We used two model weighting functions to derive the neutral wind from EISCAT data. One was that the neutral wind velocity observed with the FPI is velocity integrated over the entire emission layer and multiplied by the theoretical normalized emission rate. The other was that the neutral wind velocity observed with the FPI corresponds to the velocity only around an altitude where the emission rate has a peak. Differences between the two methods were identified, but not completely clarified. However, the neutral wind velocities from both instruments had peak-to-peak correspondences at oscillation periods of about 10–40 min, shorter than that for the momentum transfer from ions to neutrals, but longer than from neutrals to ions. The synchronizing motions in the neutral wind velocities suggest that the momentum transfer from neutrals to ions was thought to be dominant for the observed field-aligned oscillations rather than the transfer from ions to neutrals. It is concluded that during the observation, the plasma oscillations observed with the EISCAT radar at different altitudes in the F-region are thought to be due to the motion of neutrals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号