首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   347篇
  免费   14篇
  国内免费   7篇
测绘学   2篇
大气科学   19篇
地球物理   79篇
地质学   131篇
海洋学   56篇
天文学   58篇
综合类   2篇
自然地理   21篇
  2021年   7篇
  2020年   4篇
  2018年   7篇
  2017年   11篇
  2016年   9篇
  2015年   7篇
  2014年   7篇
  2013年   11篇
  2012年   14篇
  2011年   12篇
  2010年   12篇
  2009年   10篇
  2008年   19篇
  2007年   18篇
  2006年   20篇
  2005年   16篇
  2004年   16篇
  2003年   24篇
  2002年   10篇
  2001年   12篇
  2000年   9篇
  1999年   13篇
  1998年   4篇
  1997年   7篇
  1996年   3篇
  1995年   4篇
  1994年   5篇
  1993年   4篇
  1992年   5篇
  1991年   4篇
  1990年   2篇
  1989年   6篇
  1987年   3篇
  1986年   5篇
  1985年   6篇
  1984年   4篇
  1983年   3篇
  1982年   2篇
  1980年   4篇
  1979年   2篇
  1978年   3篇
  1974年   2篇
  1973年   1篇
  1972年   4篇
  1971年   1篇
  1970年   2篇
  1969年   4篇
  1968年   2篇
  1964年   1篇
  1962年   1篇
排序方式: 共有368条查询结果,搜索用时 26 毫秒
41.
42.
The Happo-O’ne peridotite complex is situated in the northeastern part of the Hida Marginal Tectonic Zone, central Japan, characterized by the high-P/T Renge metamorphism, and is considered as a serpentinite mélange of Paleozoic age. Peridotitic rocks, being massive or foliated, have been subjected to hydration and metamorphism. Their protoliths are mostly lherzolites to harzburgites with subordinate dunites. We found a characteristic mineral assemblage, olivine + orthopyroxene + tremolite + chlorite + chromian spinel, being stable at low-T, from 650 to 750°C, and high-P, from 16 to 20 kbar, tremolite–chlorite peridotites of the tremolite zone. Olivines are Fo88–Fo91, and orthopyroxenes (Mg# = 0.91) show low and homogenous distributions of Al2O3 (up to 0.25 wt%), Cr2O3 (up to 0.25 wt%), CaO (up to 0.36 wt%) and TiO2 (up to 0.06 wt%) due to the low equilibration temperature. Chromian spinels, which are euhedral and enclosed mainly in the orthopyroxenes, have high TiO2, 3.1 wt% (up to 5.7 wt%) on average, and high Cr# [=Cr/(Cr + Al) atomic ratio], 0.95 on average but low Fe3+ [=Fe3+/(Cr + Al + Fe3+) atomic ratio, <0.3]. The bulk-rock chemistry shows that the Happo-O’ne metaperidotites with this peculiar spinel are low in TiO2 (0.01–0.02 wt%), indicating no addition of TiO2 from the outside source during the metamorphism; the high TiO2 of the peculiar spinel has been accomplished by Ti release from Ti-bearing high-T pyroxenes during the formation of low-T, low-Ti silicates (<0.1 wt% TiO2) during cooling. Some dunites are intact from hydration: their olivine is Fo92 and spinel shows high Cr#, 0.72. The Happo-O’ne metaperidotites (tremolite–chlorite peridotites), being in the corner of the mantle wedge, are representative of a hydrous low-T, high-P mantle peridotite facies transitional from a higher T anhydrous peridotite facies (spinel peridotites) formed by in situ retrograde metamorphism influenced by fluids from the subducting slab. They have suffered from low-T (<600°C) retrogressive metamorphism to form antigorite and diopside during exhumation of the Renge metamorphic belt.  相似文献   
43.
Besshi-type Cu deposits are strata-bound volcanogenic massive sulfide deposits usually associated with mafic volcanic rocks or their metamorphic equivalents. Although there are numerous Besshi-type deposits in the Sanbagawa metamorphic belt, Japan, their tectonic settings and depositional environments remain controversial because of a lack of depositional age constraints. We report Re-Os data for the Iimori deposit, one of the largest Besshi-type deposits in western Kii Peninsula, in order to examine the robustness of the Re-Os isotope system for dating sulfide minerals in the high-P/T metamorphic belt and to elucidate the primary depositional environment of the Iimori sulfide ores. An 11-point Re-Os isochron plot yields an age of 156.8 ± 3.6 Ma. As this Re-Os isochron age is significantly older than the timing of the Sanbagawa peak metamorphism (110-120 or ∼90 Ma) and a well-defined isochron was obtained, the Re-Os age determined here is most likely the primary depositional age. Despite high-grade metamorphism at up to 520 ± 25 °C and 8-9.5 kbar, the Re-Os isotope system of the Iimori sulfides was not disturbed. Hence, we consider that the whole-rock Re-Os closure temperature for the Iimori sulfide ores was probably higher than 500 °C. As the accretion age of the Sanbagawa metamorphic belt is considered to be 120-130 or 65-90 Ma on the basis of radiolarian and radiometric ages, we estimated the time from the Iimori sulfide deposition on the paleo-seafloor to its accretion at the convergent plate boundary to be greater than 25 Myr. Consequently, the depositional environment of the Iimori sulfide ores was not in the marginal sea, but was truly pelagic.  相似文献   
44.
The Eocene dyke swarm with east-west general trend intrudes the Cretaceous sedimentary rocks in ~25 km north of the Khur city (Central Iran). Some of the studied dykes can be followed for over 7 km, but the majority of exposures in the area are less than 5 km long. The dykes commonly exhibit a chilled contact with the wall rocks. These dykes are trachybasalt and basalt in composition. The trachybasalt dykes are much more abundant. The basaltic dykes cross cut the trachybasalt dykes in some locations, indicating that trachybasalt dykes are older than the basaltic ones. Primary igneous minerals of the basaltic dykes are olivine (chrysolite), clinopyroxene (diopside, augite), plagioclase (labradorite), sanidine, magnetite, orthopyroxene (enstatite), spinel and phlogopite, and secondary minerals are zeolite (natrolite and mesolite), chlorite (diabantite), calcite and serpentine. The trachybasalt dykes are composed of clinopyroxene (diopside), plagioclase (labradorite), sanidine, mica (biotite and phlogopite), amphibole (magnesio-hastingsite) and magnetite as primary minerals, and chlorite and calcite as secondary ones. Whole rocks geochemical data of the studied dykes indicate their basic and calc-alkaline nature and suggest that these two set of dykes were derived from the same parental magma. The chondrite-normalized REE patterns and the primitive mantle-normalized multi-elemental diagram of the Khur dykes show enrichment of light rare earth elements (LREE) relative to heavy rare earth elements (HREE), and negative anomalies of high field strength elements (HFSE) (e.g. Ti, Nb and Ta). These rocks show enrichment of the large ion lithophile elements (LILE) (e.g. Cs, Ba, Th and U) and depletion of the HREE and Y relative to MREE, Zr and Hf. In the chondrite-normalized REE diagram, the basalts show elevated REE abundances relative to the trachybasalt samples. Geochemical analyses of the studied samples suggest a spinel lherzolite from the mantle as the source rock and confirm the role of subduction in their generation. The chemical characteristics of the Khur dykes resemble those of continental arc rocks, and they were possibly formed by subduction of the Central-East Iranian microcontinent (CEIM) confining oceanic crust and decompression melting of a lithospheric subcontinental mantle spinel lherzolite enriched by subduction.  相似文献   
45.
Recent reassessment of abyssal peridotites obtained during the dredging of the oblique supersegment and the easternmost subsection of the Southwest Indian Ridge by the R/V Knorr Cruise 162 and the R/V Yokosuka YK98-07 revealed the occurrence of dunites containing podiform chromitites and dunites with variable chromite concentration closely associated with lherzolite and harzburgite. The size of the chromitite pods varies from a few mm to 2 cm in width. Chromites in the podifom chromitites have very low Cr# (=0.22–0.23) and low TiO2 (<0.17 wt%). They are almost free of silicate inclusions except for a few euhedral sulfide grains which occur far from cracks and lamellae and are considered primary in origin. The lherzolite which possibly represents the wallrock hosting the dunites with podiform chromitites also show low spinel Cr#(=0.16) and low Cr# in the clinopyroxenes (=0.09–0.10) and orthopyroxenes (=0.07–0.09). The small size of the SWIR podiform chromitites is strongly controlled by the low Cr/Al available in the wallrock and the invading melt. The presence of sulfide inclusions and the absence of PGEs further attest to the low Cr/Al (i.e. low refractoriness) in the system involved in the genesis of the SWIR podiform chromitites. Lastly, the discovery of podiform chromitites in the SWIR implies that the formation of podiform chromitite at mid-oceanic ridges, regardless of its spreading rate, is highly possible.  相似文献   
46.
47.
We report on time-resolved photometry carried out during the 1995 short outburst and the 1997 long outburst in the eclipsing dwarf nova DV UMa. The revised orbital period is 0.0858526172 (67) d. We detected gigantic superhumps with an amplitude of ∼0.6 mag in the mid-phase of the 1997 outburst, revealing the SU UMa nature of DV UMa. The superhump period is 0.0887 (4) d. The superhumps became less clear during the late phase of the superoutburst, and we found two possible periods of 0.0885 (15) and 0.0764 (15). During both outbursts, the eclipse was wide and shallow near the maximum, and then became narrower and deeper, which is qualitatively well explained by the current disc instability theory.  相似文献   
48.
<正>Chromite is a typical refractory igneous mineral,precipitated from mafic magmas at relatively high temperatures.Chromites commonly occur in sedimentary,metamorphic and metasomatic rocks,where they are interpreted as relics of an igneous phase and serve as the source of Cr for low-temperature Cr-bearing minerals.We  相似文献   
49.
Mélanges occur as discontinuous, mappable, units along an extensive N–S-trending, steeply dipping zone of distributed shear in metamorphic complexes along the coast of central Chile. Large mélange zones, from north to south, near Chañaral, Los Vilos, Pichilemu, and Chiloé Island, contain variations in lithologic and structural detail, but are consistent in exhibiting cross-cutting fabric features indicating a progressive transition from earlier ductile to more brittle deformation. In the Infiernillo mélange near Pichilemu, Permian to Early Triassic, sub-horizontal schistosity planes of the Western Series schist are disrupted, incorporated into, and uplifted along high-angle, N–S- to NNE–SSW-trending brittle–ductile shears. Mylonitic and cataclastic zones within the mélange matrix indicate active lateral shear during cumulative exhumation from depths exceeding 12 km in some areas. Exotic lithologies, such as Carboniferous mafic amphibolite and blueschist, formed during earlier Gondwanide subduction, match well with similar rocks in the Bahia Mansa to Los Pabilos region 750 km to the south, suggesting possible dextral offset. The development of the Middle to Late Triassic, N–S=trending, near-vertical shear zones formed weaknesses in the crust facilitating later fault localization, gravitational collapse, and subduction erosion along the continental margin. The length and linearity of this zone of lateral movement, coincident with a general hiatus of regional arc magmatism during the Middle to Late Triassic, is consistent with large-scale dextral transpression, or possible transform movement, during highly oblique NNE–SSW convergence along the pre-Andean (Gondwana) margin. The resultant margin parallel N–S-trending shear planes may be exploited by seismically active faults along the present coastal area of Chile. The palaeo-tectonic setting during the transitional period between earlier Gondwanide (Devonian to Permian) and later Andean (Late Jurassic to present) subduction may have had some similarity to the presently active San Andreas transform system of California.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号