首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25820篇
  免费   6283篇
  国内免费   9624篇
测绘学   4681篇
大气科学   3363篇
地球物理   4766篇
地质学   17538篇
海洋学   4703篇
天文学   396篇
综合类   2196篇
自然地理   4084篇
  2024年   255篇
  2023年   681篇
  2022年   1603篇
  2021年   2110篇
  2020年   1612篇
  2019年   1932篇
  2018年   1654篇
  2017年   1643篇
  2016年   1683篇
  2015年   2000篇
  2014年   1779篇
  2013年   2250篇
  2012年   2501篇
  2011年   2338篇
  2010年   2338篇
  2009年   2151篇
  2008年   2225篇
  2007年   1981篇
  2006年   1956篇
  2005年   1584篇
  2004年   1182篇
  2003年   848篇
  2002年   950篇
  2001年   850篇
  2000年   652篇
  1999年   350篇
  1998年   115篇
  1997年   85篇
  1996年   61篇
  1995年   28篇
  1994年   38篇
  1993年   39篇
  1992年   47篇
  1991年   12篇
  1990年   29篇
  1989年   14篇
  1988年   11篇
  1987年   10篇
  1986年   12篇
  1985年   15篇
  1984年   6篇
  1983年   5篇
  1982年   5篇
  1981年   5篇
  1979年   11篇
  1959年   3篇
  1958年   6篇
  1957年   15篇
  1955年   4篇
  1954年   18篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
The Sidingheishan mafic-ultramafic intrusion is located in the eastern part of the Northern Tianshan Mountain, along the southern margin of the Central Asian Orogenic Belt in northern Xinjiang autonomous region of China. The Sidingheishan intrusion is mainly composed of wehrlite, olivine websterite, olivine gabbro, gabbro and hornblende gabbro. At least two pulses of magma were involved in the formation of the intrusion. The first pulse of magma produced an olivine-free unit and the second pulse produced an olivine-bearing unit. The magmas intruded the Devonian granites and granodiorites.An age of 351.4±5.8 Ma(Early Carboniferous) for the Sidingheishan intrusion has been determined by U-Pb SHRIMP analysis of zircon grains separated from the olivine gabbro unit. A U-Pb age of 359.2±6.4 Ma from the gabbro unit has been obtained by LA-ICP-MS. Olivine of the Sidingheishan intrusion reaches 82.52 mole% Fo and 1414 ppm Ni. On the basis of olivine-liquid equilibria, it has been calculated that the MgO and FeO included in the parental magma of a wehrlite sample were approximately10.43 wt% and 13.14 wt%, respectively. The Sidingheishan intrusive rocks are characterized by moderate enrichments in Th and Sm, slight enrichments in light REE, and depletions in Nb, Ta, Zr and Hf. The ε_(Nd)(t) values in the rock units vary from +6.70 to +9.64, and initial ~(87)Sr/~(86)Sr ratios range between 0.7035 and0.7042. Initial ~(206)Pb/~(204)Pb, ~(207)Pb/~(204)Pb and ~(208)Pb/~(204)Pb values fall in the ranges of 17.23-17.91,15.45-15.54 and 37.54-38.09 respectively. These characteristics are collectively similar to the Heishan intrusion and the Early Carboniferous subduction related volcanic rocks in the Santanghu Basin, North Tianshan and Beishan area. The low(La/Gd)_(PM) values between 0.26 and 1.77 indicate that the magma of the Sidingheishan intrusion was most likely derived from a depleted spinel-peridotite mantle.(Th/Nb)_(PM)ratios from 0.59 to 20.25 indicate contamination of the parental magma in the upper crust.Crystallization modeling methods suggest that the parental magma of the Sidingheishan intrusion was generated by flush melting of the asthenosphere and subsequently there was about 10 vol%contamination from a granitic melt. This was followed by about 5 vol% assimilation of upper crustal rocks. Thus, the high-Mg basaltic parental magma of Sidingheishan intrusion is interpreted to have formed from partial melting of the asthenosphere during the break-off of a subducted slab.  相似文献   
992.
The Bulqiza ultramafic massif, which is part of the eastern Mirdita ophiolite of northern Albania, is world renowned for its high-Cr chromitite deposits. High-Cr chromitites hosted in the mantle section are the crystallized products of boninitic melts in a supra-subduction zone (SSZ). However, economically important high-Al chromitites are also present in massive dunite of the mantle-crust transition zone (MTZ). Chromian-spinel in the high-Al chromitites and dunites of the MTZ have much lower Cr# values (100Cr/(Cr+Al)) (47.7–55.1 and 46.5–51.7, respectively) than those in the high-Cr chromitites (78.2–80.4), harzburgites (72.6–77.9) and mantle dunites (79.4–84.3). The chemical differences in these two types of chromitites are reflected in the behaviors of their platinum-group elements (PGE). The high-Cr chromitites are rich in IPGE relative to PPGE with 0.10–0.45 PPGE/IPGE ratios, whereas the high-Al chromitites have relatively higher PPGE/IPGE ratios between 1.20 and 7.80. The calculated melts in equilibrium with the high-Cr chromitites are boninitic-like, and those associated with the high-Al chromitites are MORB-like but with hydrous, oxidized and TiO2-poor features. We propose that the coexistence of both types of chromitites in the Bulqiza ultramafic massif may indicates a change in magma composition from MORB-like to boninitic-like in a proto-forearc setting during subduction initiation.  相似文献   
993.
The Zedong ophiolites in the eastern Yarlung–Zangbo suture zone of Tibet represent a mantle slice of more than 45 km~2. This massif consists mainly of mantle peridotites, with lesser gabbros, diabases and volcanic rocks. The mantle peridotites are mostly harzburgite, lherzolite; a few dike-like bodies of dunite are also present. Mineral structures show that the peridotites experienced plastic deformation and partial melting. Olivine(Fo89.7–91.2), orthopyroxene(En_(88–92)), clinopyroxene(En_(45–49) Wo_(47–51) Fs_(2–4)) and spinel [Mg~#=100×Mg/(Mg+Fe)]=49.1–70.7; Cr~#=(100×Cr/(Cr+Al)=18.8–76.5] are the major minerals. The degree of partial melting of mantle peridotites is 10%–40%, indicating that the Zedong mantle peridotites may experience a multi–stage process. The peridotites are characterized by depleted major element compositions and low REE content(0.08–0.62 ppm). Their "spoon–shaped" primitive–mantle normalized REE patterns with(La/Sm)_N being 0.50–6.00 indicate that the Zedong ultramafic rocks belong to depleted residual mantle rocks. The PGE content of Zedong peridotites(18.19–50.74 ppb) is similar with primary mantle with Pd/Ir being 0.54–0.60 and Pt/Pd being 1.09–1.66. The Zedong peridotites have variable, unradiogenic Os isotopic compositions with ~(187)Os/~(188)Os=0.1228 to 0.1282. A corollary to this interpretation is that the convecting upper mantle is heterogeneous in Os isotopes. All data of the Zedong peridotites suggest that they formed originally at a mid-ocean ridge(MOR) and were later modified in supra–subduction zone(SSZ) environment.  相似文献   
994.
The Jiajiwaxi pluton in the southern portion of the West Kunlun Range can be divided into two collision–related intrusive rock series, i.e., a gabbro–quartz diorite–granodiorite series that formed at 224±2.0 Ma and a monzonitic granite–syenogranite series that formed at 222±2.0 Ma. The systematic analysis of zircon U-Pb geochronology and bulk geochemistry is used to discuss the magmatic origin(material source and thermal source), tectonic setting, genesis and geotectonic implications of these rocks. The results of this analysis indicate that the parent magma of the first series, representing a transition from I-type to S-type granites, formed from thermally triggered partial melting of deep crustal components in an early island–arc–type igneous complex, similar to an I-type granite, during the continental collision orogenic stage. The parent magma of the second series, corresponding to an S-type granite, formed from the partial melting of forearc accretionary wedge sediments in a subduction zone in the late Palaeozoic–Triassic. During continued collision, the second series magma was emplaced into the first series pluton along a central fault zone in the original island arc region, forming an immiscible puncture-type complex. The deep tectonothermal events associated with the continent–continent collision during the orogenic cycle are constrained by the compositions and origins of the two series. The new information provided by this paper will aid in future research into the dynamic mechanisms affecting magmatic evolution in the West Kunlun orogenic belt.  相似文献   
995.
正Objective Lhasa terrane has recorded the geologic history concerning the formation and evolution of Paleo-Tethys and the intra-continental convergence in Qinghai–Tibet Plateau(Yin and Harrison,2000).Previous investigations have focused on the initial timing of the India-Asia collision and the Cretaceous–Cenozoic magmatism and sedimentation(Wang Tianyang et al.,2017),however,  相似文献   
996.
正Objective The Jiaodong area in Shandong Province of eastern China hosts abundant high-quality groundwater.Most of the mineral water sources in this area,including those in the Laoshan and Kunyu Mountains,occur in Mesozoic granites.The groundwater and mineral waters contain metasilicic acid and strontium but the latter is potable.  相似文献   
997.
998.
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号