首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   286篇
  免费   18篇
  国内免费   8篇
测绘学   7篇
大气科学   20篇
地球物理   86篇
地质学   116篇
海洋学   15篇
天文学   35篇
综合类   18篇
自然地理   15篇
  2023年   2篇
  2022年   5篇
  2021年   8篇
  2020年   2篇
  2019年   8篇
  2018年   19篇
  2017年   16篇
  2016年   24篇
  2015年   22篇
  2014年   19篇
  2013年   32篇
  2012年   16篇
  2011年   16篇
  2010年   15篇
  2009年   14篇
  2008年   7篇
  2007年   10篇
  2006年   9篇
  2005年   6篇
  2004年   12篇
  2003年   9篇
  2002年   6篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   4篇
  1992年   3篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1982年   1篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有312条查询结果,搜索用时 15 毫秒
71.
DIAGNOSIS OF WAVE ACTIVITY OVER RAINBAND OF LANDFALL TYPHOON   总被引:1,自引:0,他引:1  
A generalized wave-activity density, which is defined as an absolute value of production of three-dimensional vorticity vector perturbation and gradient of general potential temperature perturbation, is introduced and its wave-activity law is derived in Cartesian coordinates. Constructed in an agoestrophic and nonhydrostatic dynamical framework, the generalized wave-activity law may be applicable to diagnose mesoscale weather systems leading to heavy rainfall. The generalized wave-activity density and wave-activity flux divergence were calculated with the objective analysis data to investigate the character of wave activity over heavy-rainfall regions. The primary dynamical processes responsible for disturbance associated with heavy rainfall were also analyzed. It was shown that the generalized wave-activity density was closely correlated to the observed 6-h accumulative rainfall. This indicated that the wave activity or disturbance was evident over the frontal and landfall-typhoon heavy-rainfall regions in middle and lower troposphere. For the landfall-typhoon rainband, the portion of generalized wave-activity flux divergence, denoting the interaction between the basic-state cyclonic circulation of landfall typhoon and mesoscale waves, was the primary dynamic process responsible for the evolution of generalized wave-activity density.  相似文献   
72.
We derive the cosmic energy equation for the non-point mass system of galaxies (galaxies with halos) by using the adiabatic approximation for the growth of gravitational clustering of galaxies in the expanding Universe. The cosmic energy equation so derived represents the general form of conservation of energy for the expanding volume. Using the derived form of cosmic energy equation we try to study the evolution of correlation potential energy of the system. We also try to explore the condition under which the approximation of extensivity may be applied to the infinite gravitating non-point mass system of galaxies.  相似文献   
73.
There is an urgent need for characterization of leachate arising from waste disposal to ensure a corresponding effective leachate management policy. Field and laboratory studies have been carried out to investigate the impact of municipal landfill leachate on the underlying groundwater at a site in West Malaysia. The solid waste was disposed of directly onto an unprotected natural soil formation. This situation was made worse by the shallow water table. The hydrochemical composition of groundwater in the vicinity of the site (background) is a dilute mixed cation, bicarbonate water. The high ionic balance error of ~13.5% reveals that the groundwater body underneath the site was a highly contaminated leachate rather than contaminated groundwater. Elevated concentration of chloride (355.48 mg/L), nitrate (10.40 mg/L as NO3), nitrite (14.59 mg/L), ammoniacal-N (11.61 mg/L), sodium (227.56 mg/L), iron (0.97 mg/L), and lead (0.32 mg/L) measured downgradient indicate that the contamination plume has migrated further away from the site. In most cases, the concentration of these contamination indicators, together with the ranges of sodium percentage (66.3–89.9%) and sodium adsorption ratio (10.1–19.7%), were found to be considerably higher than the limit values of safe water for both domestic and irrigation purposes, respectively.  相似文献   
74.
75.
76.
Hydrological responses in a zero‐order basin (ZOB), a portion of whose discharge emerged via preferential flow through soil pipes, were examined over a 2‐year period in Peninsular Malaysia to elucidate primary stormflow generation processes. Silicon (Si) and specific conductance (EC) in various runoff components were also measured to identify their sources. ZOB flow response was dependent on antecedent precipitation amount; runoff increased linearly with precipitation during events >20 mm in relatively wet antecedent moisture conditions. Runoff derived from direct precipitation falling onto saturated areas accounted for <0·2% of total ZOB flow volume during the study period, indicating the predominance of subsurface pathways in ZOB flow. ZOB flow (high EC and low Si) was distinct from perennial baseflow via bedrock seepage (low EC and high Si) 5 m downstream of the ZOB outlet. Pipe flow responded quickly to ZOB flow rate and was characterized by a threshold flow capacity unique to each pipe. Piezometric data and pipe flow records demonstrated that pipes located deeper in the soil initiated first, followed by those at shallower depths; initiation of pipe flow corresponded to shallow groundwater rise above the saprolite‐soil interface. Chemical signatures of pipe flow were similar to each other and to the ZOB flow, suggesting that the sources were well‐mixed soil‐derived shallow groundwater. Based upon the volume of pipe flow during storms, the combined contribution of the pipes monitored accounted for 48% of total ZOB flow during the study period. Our results suggest that shallow groundwater, possibly facilitated by preferential flow accreted above the saprolite–soil interface, provides dominant stormflow, and that soil pipes play an important role in the rapid delivery of solute‐rich water to the stream system. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
77.
The present study aimed to quantify the water and sediment quality and growth and production parameters and to establish nutrient budgets for an average of five selected semi-intensive shrimp ponds in Bangladesh over a growing cycle. Physico-chemical parameters of water and sediments were measured and analyzed by standard methods. Gross yield (kg ha-1) of shrimp was calculated from the stocking and harvesting data. Finally, a partial nutrient mass budget for N and P was calculated. Most of the parameters of water and sediments correlated significantly with each other suggesting a high degree of interactions between different parameters in the system. Significantly higher concentrations of all species of nitrogenous nutrients were recorded in the effluent waters than that entering into the ponds. Therefore, a high loading and net output of nitrogenous nutrients in effluent waters was documented. The study also indicated a net discharge of solids and minerals through effluent loading. However, significantly lower concentrations of phosphorus in the effluent water indicated a net retention and trapping of phosphatic nutrients in the environment. Total production ranged between 532.0 and 697.0 kg ha-1 cycle-1 and P. monodon production between 484.0 and 562.0 kg ha-1 cycle-1. Ponds gained nitrogen primarily from intake water (55%) and fertilizers (29%), and nitrogen was lost primarily from water exchange (78%) and harvested shrimp (12%). Phosphorus gain occurred mostly from intake water (52%) and fertilizers (25%), and phosphorus was lost primarily from water exchange (52%) and harvested shrimp (3.3%). About 10% of input nitrogen and 44% of phosphorus were not accounted for in measured losses, and presumably were fixed or metabolized in the system. On average, 78 g N was discharged to and 25 g P was removed from the surrounding water by the system for each kilogram of shrimp produced. Mean conversion of feed nitrogen and phosphorus to shrimp flesh averaged 74% and 40%, respectively. It was concluded that semi-intensive systems serve as net supplier of N to and net remover of P from the surrounding water.  相似文献   
78.
79.
Seismic imaging is an important step for imaging the subsurface structures of the Earth. One of the attractive domains for seismic imaging is explicit frequency–space (fx) prestack depth migration. So far, this domain focused on migrating seismic data in acoustic media, but very little work assumed visco‐acoustic media. In reality, seismic exploration data amplitudes suffer from attenuation. To tackle the problem of attenuation, new operators are required, which compensates for it. We propose the weighted L 1 ‐error minimisation technique to design visco‐acoustic f – x wavefield extrapolators. The L 1 ‐error wavenumber responses provide superior extrapolator designs as compared with the previously designed equiripple L 4 ‐norm and L‐norm extrapolation wavenumber responses. To verify the new compensating designs, prestack depth migration is performed on the challenging Marmousi model dataset. A reference migrated section is obtained using non‐compensating fx extrapolators on an acoustic dataset. Then, both compensating and non‐compensating extrapolators are applied to a visco‐acoustic dataset, and both migrated sections are then compared. The final images show that the proposed weighted L 1 ‐error method enhances the resolution and results in practically stable images.  相似文献   
80.
Zheng  Yuanchuan  Wang  Lu  Xue  Chuandong  Xu  Bo  Ghaffar  Abdul  Yang  Zhusen  Lu  Yongjun  Zhou  Limin  Griffin  William L.  Hou  Zengqian 《中国科学:地球科学(英文版)》2020,63(11):1807-1816

Saindak is one of the typical porphyry Cu deposits (PCDs) in the Chagai magmatic arc in Pakistan. Ore-forming porphyries at Saindak PCD are mainly composed of tonalite. Here, we use geochemistry of apatite enclosed in plagioclase phenocrysts from the ore-forming tonalite to constrain the releasing and recharging processes of S and Cl in the underlying parental magma chamber during PCD mineralization. Although apatite inclusions have homogeneous intra-grain S and Cl compositions, there is significant inter-grain S and Cl variations in apatite inclusions located from core to rim in the hosting plagioclase. Such inter-grain S and Cl variation in apatites are coupled with the core-to-rim trends of An, FeO and Mg contents of the hosting plagioclase phenocryst. It indicates that the Saindak PCD likely formed by episodic injection of primitive magmas during the growth of an underlying magma chamber, rather than by one major injection or by addition of mafic melt derived from different source region. Each primitive melt injection introduced essential ore-forming materials such as S and Cl, which were rapidly and effectively released to the coexisting fluids, causing mineralization. Once primitive melt injection stops, signaling the end of growth of underlying magma chamber, mineralization will cease quickly although the hydrothermal system can still survive for a long time. However, the later released fluids are relatively depleted in ore-forming materials, and thus have lower capability to generate mineralization. Accordingly, predominant porphyry-type mineralizations occurred during the growth rather than waning stage of a magmatic system.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号