首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   462篇
  免费   30篇
  国内免费   11篇
测绘学   15篇
大气科学   36篇
地球物理   147篇
地质学   197篇
海洋学   24篇
天文学   39篇
综合类   23篇
自然地理   22篇
  2024年   2篇
  2023年   3篇
  2022年   10篇
  2021年   11篇
  2020年   10篇
  2019年   19篇
  2018年   34篇
  2017年   33篇
  2016年   41篇
  2015年   37篇
  2014年   36篇
  2013年   57篇
  2012年   26篇
  2011年   33篇
  2010年   17篇
  2009年   18篇
  2008年   10篇
  2007年   14篇
  2006年   11篇
  2005年   6篇
  2004年   14篇
  2003年   10篇
  2002年   5篇
  2001年   7篇
  2000年   1篇
  1999年   1篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   4篇
  1992年   3篇
  1991年   3篇
  1990年   5篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有503条查询结果,搜索用时 31 毫秒
81.
Sequential extraction procedures are widely used to characterize the different operational fractions with different potential toxicity of metals in environmental solid samples. The present work describes the application of different analytical approaches for sequential extraction of aluminum to evaluate its mobility, availability, and persistent chemical forms in sediment samples of different fresh water ecosystems (lake, canal, and river). The conventional BCR three‐stage sequential extraction procedure (C‐BCR) was modified at each stage, by applying ultrasonic device (U‐BCR), in order to shorten the required shaking time of 16 h for each three steps (excluding the hydrogen peroxide digestion in step 3, which was not performed with ultrasonic bath), could be completed in 40, 50, and 45 min, respectively. The aluminum in all extracts were determination by atomic absorption spectrometry using nitrous oxide – acetylene flame. The accuracy of results obtained from C‐BCR and proposed U‐BCR was verified with literature reported values of certified sediment sample (BCR 701). The overall recoveries of aluminum obtained by proposed U‐BCR were found in the range of 96.7–113% of those values obtained with C‐BCR for all fractions. Use of ultrasonic device, provided a large saving in extraction time relative to conventional shaking. It was observed that major part of Al in real sediment samples (80–83% of total Al) were bound to residual fraction. The acid soluble fraction of aluminum extracted by 0.11 mol/L CH3COOH has good correlation with aluminum content in corresponding water samples of each ecosystem.  相似文献   
82.
Abstract

The main objective of this study is to assess the relative contribution of the state-of-the-art topo-hydrological factor, known as height above the nearest drainage (HAND), to landslide susceptibility modellling using three novel statistical models: weights-of-evidence (WofE), index of entropy and certainty factor. In total, 12 landslide conditioning factors that affect the landslide incidence were used as input to the models in the Ziarat Watershed, Golestan Province, Iran. Landslide inventory was randomly divided into a ratio of 70:30 for training and validating the results of the models. The optimum combination of conditioning factors was identified using the principal components analysis (PCA) method. The results demonstrated that HAND is the defining factor among hydrological and topographical factors in the study area. Additionally, the WofE model had the highest prediction capability (AUPRC = 74.31%). Therefore, HAND was found to be a promising factor for landslide susceptibility mapping.  相似文献   
83.

Pre and Post-Monsoon levels of ambient SO2, NO2, PM2.5 and the trace metals Fe, Cu, etc. were measured at industrial and residential regions of the Kochi urban area in South India for a period of two years. The mean PM2.5, SO2 and NO2 concentrations across all sites were 38.98?±?1.38 µg/m3, 2.78?±?0.85 µg/m3 and 11.90?±?4.68 µg/m3 respectively, which is lower than many other Indian cities. There was little difference in any on the measured species between the seasons. A few sites exceeded the NAAQS (define acronym and state standard) and most of the sites exceeded WHO (define acronym and state standard) standard for PM2.5. The average trace metal concentrations (ng/m3) were found to be Fe (32.58)?>?Zn (31.93)?>?Ni (10.13)?>?Cr (5.48)?>?Pb (5.37)?>?Cu (3.24). The maximum concentration of trace metals except Pb were reported in industrial areas. The enrichment factor, of metals relative to crustal material, indicated anthropogenic dominance over natural sources for the trace metal concentration in Kochi’s atmosphere. This work demonstrates the importance of air quality monitoring in this area.

  相似文献   
84.
Multivariate statistical techniques, i.e., correlation coefficient analysis, principal components analysis (PCA), and hierarchical cluster analysis (CA), were applied to the total and water-soluble concentrations of potentially hazardous metals in sediments associated with the Sarcheshmeh mine, one of the largest Oligo-Miocene porphyry copper deposits in the world. The samples were analyzed for hazardous metal concentration levels by inductively coupled plasma mass spectrometry method. Results indicate that the contaminant metals As, Cd, Cu, Mo, S, Sb, Sn, Se, Pb, and Zn were positively correlated with the total concentrations. These hazardous metals also have strong association in the PCA and CA results. Different anthropic versus natural sources of contaminant metals were distinguished by using CA method. Water-soluble fraction of hazardous metals showed that the hydro-geochemical behavior of these metals in sediments is different considerably. Elements such as Cd, Co, Cr, Cu, Fe, Mn, Ni, S, and Zn are readily water soluble from contaminated samples, especially from evaporative mineral phases, while the release of As, Mo, Sb, and Pb into the water is limited by adsorption processes. Results obtained from the application of multivariate techniques on the water-soluble fraction data set show that the hazardous metals are categorized into three groups including (1) Ni, S, Co, Cu, Cr, and Fe; (2) Se, Mn, Cd, and Zn; and (3) Sb, As, Mo, and Sn. This classification describes the hydro-geochemical behavior of hazardous metals in water–sediment environments of the Sarcheshmeh porphyry copper mine and can be used as a basis in remedial and treatment strategies.  相似文献   
85.
The Upper Triassic-Middle Jurassic sedimentary succession in the Tabas Basin, with a thickness of about 1600 m, provides a case showing geochemical property changes through the Triassic-Jurassic boundary. The studied section (Kamarmacheh Kuh) is composed of the marine Nayband Formation (Norian-Rhaetian) overlain by siliciclastic sediments of Ab-e-Haji Formation (Lower Jurassic-Aalenian). Detailed geochemical analyses were conducted on selected samples from both formations and the results were used to infer paleo-depositional conditions. Most of the studied samples contain <1 wt% TOC composed mostly of oxidized organic matter with insignificant generative potential. Extract analysis of four representative samples indicate that the rocks also contain minor amounts of preserved algal organic matter along with a secondary contribution of higher plant organic matter from the adjacent watershed. Biomarker analyses show subtle variations in the relative contribution of land plant material that are consistent with the widespread occurrence of coal seams in the upper parts of the Nayband and basal parts of the Ab-e-Haji formations. Although the samples from the Kamarmacheh Kuh Section have low source potential, the extractable hydrocarbons indicate that conditions existed that were conducive to organic matter preservation and that regions of the Tabas Basin with higher primary productivity or lower sedimentation rates may have greater potential.  相似文献   
86.
This paper presents a three dimensional Computational Fluid Dynamics (CFD) model to investigate the flow dynamics of solid–gas phases during fine grinding in an air jet mill. Alpine 100AFG fluidized bed air jet mill is considered for the study and the jet milling model is simulated using FLUENT 6.3.2 using a standard k-ε model. The model is developed in GAMBIT 2.3.16 and meshed by tet/hybrid (T-Grid) and Triangular (Pave) meshes. The effects of operating parameters such as solid feed rate, grinding air pressure and internal classifier speed on the performance of the jet mill are analyzed. The CFD simulation results are presented in the forms of dual phase vector plot, volume fraction of phases and particle trajectories during fine grinding process. The mass of ground feed entering and leaving the cyclone (underflow) is also computed by simulation. The proposed model gives realistic predictions of the flow dynamics within the jet mill. Experiments are conducted on the Alpine 100AFG jet mill to study the particle size, morphology and mass of the ground product. The numerical results are found in good agreement with the experimental results.  相似文献   
87.
The Sarcheshmeh is one of the largest Oligo-Miocene porphyry Cu deposits in the world. Comparative hydrochemical, mineralogical and chemical fractionation associated with mining efflorescence salts and processing wastes of this mine are discussed. Hydrochemical results showed that rock waste dumps, reject wastes and old impoundments of tailings are the main sources of acid mine drainage waters (AMD) that contain potentially toxic metals such as Cd, Co, Cu, Mn, Ni and Zn as well as Al. Episodic fluxes of highly contaminated acidic waters were produced in a tailings dam over a short period of time. Secondary soluble minerals provide important controls on the quality of AMD produced, especially in old, dry tailings impoundments. Secondary sulfate minerals such as gypsum, magnesiocopiapite, hydronium jarosite, kornelite and coquimbite were found in rock waste drainages and in old weathered reject wastes. Highly soluble secondary minerals such as gypsum, eriochalcite, and bonattite are also observed in an evaporative layer on old tailings impoundments. Chemical fractionation patterns of potentially toxic elements showed that the geochemical behavior of metals is primarily controlled by the mineralogical composition of waste samples. Elements such as Co, Cr, Cu, Mn, Ni and Zn are readily released into the water soluble fraction from efflorescence salts associated with rock waste drainages, as well as from the evaporative layer of old tailings. Potentially toxic elements, such as As, Mo and Pb, are principally adsorbed or co-precipitated with amorphous and crystalline Fe oxides, but they may also be associated with oxidizing, primary sulfides and residual fractions. Following the development of the dammed tailings pond, the secondary minerals were dissolved, producing acidic waters contaminated by Al (154 mg L−1), Cu (150 mg L−1), Cd (0.31 m gL−1), Co (2.13 mg L−1), Mn (73.7 mg L−1), Ni (1.74 mg L−1), Zn (20.3 mg L−1) and Cl (1690 mg L−1). Therefore, the potential use of recycled water from the Sarcheshmenh dammed tailings pond is diminished by the presence of corrosive ions like Cl in highly acidic fluids that promote corrosion of pipes and pumps in the water recycling system.  相似文献   
88.
A field study was performed at rivers in Gunung Jerai forest reserve(Kedah,Malaysia) to assess seasonal changes in mayfly community structure and abundance in relation to altitude and water physicochemistry.Rivers at lower(Batu Hampar River) and higher(Teroi River) elevations were visited through dry and wet seasons in September 2007 to August 2008.Monthly visits were made to 20 sites on each river,and water and aquatic insects were sampled using D-pond aquatic nets.Water was warmer,more acid,and more turbid in Teroi River during wet season.Ammonia was the only nutrient exhibiting significant seasonal variations(greater during wet season).Chemical oxygen demand content was higher in Teroi River where biochemical oxygen demand content was low during wet season.Species richness was higher in Batu Hampar River,but displayed seasonal variations only in Teroi River.Among the eight families encountered,Baetidae was the commonest.Baetid abundance was usually high during wet season,and those belonging to the dominant genus(Baetis) were more abundant in Teroi River.Heptageniidae was the second commonest family;its predominant genus,Thalerospyrus was more abundant in Teroi River during dry season.Caenidae,Leptophlebiidae and Oligoneuriidae were only found in Batu Hampar River where their abundances peaked during dry season,i.e.,Habrophlebiodes sp.and Isonychia sp.Ephemerellidae and Teloganodidae occurred only in Teroi River,with the first found only during dry season.Mayflies were recorded under very distinct physicochemical conditions,illustrating their potential usefulness for assessing water quality.Caenids,leptophlebids,oligoneurids ephemerellids and teloganodids seem to be particularly sensitive to temperature,acidity,turbidity,chemical oxygen demand and biochemical oxygen demand,parameters that varied with river altitude.  相似文献   
89.
This paper aims at determining of inorganic leachate contamination for a capped unsanitary landfill in the absence of hydrogeological data. The 2D geoelectrical resistivity imaging, soil physicochemical characterization, and surface water analysis were used to determine contamination load and extent of selective heavy metal contamination underneath the landfill. The positions of the contaminated subsoil and groundwater were successfully delineated in terms of low resistivity leachate plumes of <10 Ωm. Leachate migration towards the reach of Kelang River could be clearly identified from the resistivity results and elevated concentrations of Fe in the river downslope toe of the site. Concentration of Fe, Mn, Ca, Na, K, Mg, Cu, Cr, Co, Ni, Zn, and Pb was measured for the subsoil samples collected at the downslope (BKD), upslope (BKU), and the soil-waste interface (BKI), of the landfill. The concentration levels obtained for most of the analyzed heavy metals significantly exceed the normal range in typical municipal solid waste landfill sites. The measured heavy metal contamination load in the subsoil is in the following order Fe ? Mn > Zn > Pb > Cr > Cu. Taking into consideration poor physical and chemical characteristics of the local soil, these metals first seem to be attenuated naturally at near surface then remobilize unavoidably due to the soil acidic environment (pH 4.2-6.18) which in turn, may allow an easy washing of these metals in contact with the shallow groundwater table during the periodic fluctuation of the Kelang River. These heavy metals are believed to have originated from hazardous industrial waste that might have been illegally dumped at the site.  相似文献   
90.
In general, landslides in Malaysia mostly occurred during northeast and southwest periods, two monsoonal systems that bring heavy rain. As the consequence, most landslide occurrences were induced by rainfall. This paper reports the effect of monsoonal-related geospatial data in landslide hazard modeling in Cameron Highlands, Malaysia, using Geographic Information System (GIS). Land surface temperature (LST) data was selected as the monsoonal rainfall footprints on the land surface. Four LST maps were derived from Landsat 7 thermal band acquired at peaks of dry and rainy seasons in 2001. The landslide factors chosen from topography map were slope, slope aspect, curvature, elevation, land use, proximity to road, and river/lake; while from geology map were lithology and proximity to lineament. Landslide characteristics were extracted by crossing between the landslide sites of Cameron Highlands and landslide factors. Using which, the weighting system was derived. Each landslide factors were divided into five subcategories. The highest weight values were assigned to those having the highest number of landslide occurrences. Weighted overlay was used as GIS operator to generate landslide hazard maps. GIS analysis was performed in two modes: (1) static mode, using all factors except LST data; (2) dynamic mode, using all factors including multi-temporal LST data. The effect of addition of LST maps was evaluated. The final landslide hazard maps were divided into five categories: very high risk, high risk, moderate, low risk, and very low risk. From verification process using landslide map, the landslide model can predict back about 13–16% very high risk sites and 70–93% of very high risk and high risk combined together. It was observed however that inclusion of LST maps does not necessarily increase the accuracy of the landslide model to predict landslide sites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号