首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   614篇
  免费   39篇
  国内免费   14篇
测绘学   30篇
大气科学   75篇
地球物理   152篇
地质学   179篇
海洋学   36篇
天文学   109篇
综合类   3篇
自然地理   83篇
  2024年   3篇
  2023年   6篇
  2022年   4篇
  2021年   21篇
  2020年   18篇
  2019年   29篇
  2018年   41篇
  2017年   26篇
  2016年   40篇
  2015年   34篇
  2014年   26篇
  2013年   37篇
  2012年   28篇
  2011年   27篇
  2010年   30篇
  2009年   47篇
  2008年   31篇
  2007年   30篇
  2006年   17篇
  2005年   18篇
  2004年   15篇
  2003年   18篇
  2002年   11篇
  2001年   5篇
  2000年   9篇
  1999年   4篇
  1998年   6篇
  1997年   4篇
  1996年   3篇
  1995年   3篇
  1994年   4篇
  1993年   5篇
  1992年   7篇
  1991年   4篇
  1990年   3篇
  1988年   2篇
  1987年   2篇
  1986年   6篇
  1985年   5篇
  1984年   2篇
  1983年   4篇
  1982年   3篇
  1981年   2篇
  1979年   2篇
  1978年   2篇
  1977年   7篇
  1976年   6篇
  1975年   4篇
  1973年   2篇
  1958年   1篇
排序方式: 共有667条查询结果,搜索用时 31 毫秒
151.
The aim of this study is to assess the impact of biotic and abiotic factors on peatland formation in the Central Sudetes (central Europe) during the late Holocene. The research methodology adopted allowed us to determine whether vegetation development and shallow peatland formation were affected by human activity. Knowledge of past changes might be useful in evaluating recent and future changes, and to avoid pitfalls in the present management of peatland ecosystems. A palaeoecological research study of four peatlands was conducted in the Sto?owe Mountains (Central Sudetes, SW Poland). The results showed that these shallow peatlands originated in the middle to late Holocene (from 3301 BC to AD 1137). Palaeoecological records reflect continuous human impact on vegetation development and peat accumulation from the Middle Ages to the present (late Holocene). The strongest agrarian settler activity is observed in the High Middle Ages (AD 1200–1500). The human‐induced or wildfires observed in the late Holocene were an integral component of peatland ecosystems in the Central Sudetes. Moreover, palaeoecological analysis (sphagnum spores decline) and radiocarbon dating (AD 1870) confirmed drainage of the study area in the 19th century, which greatly affected the vegetation communities.  相似文献   
152.
Monitoring the effects of acidic deposition on aquatic ecosystems in the Northeastern US has generally required regular measurements of stream buffering chemistry (i.e. acid‐neutralizing capacity (ANC) and calcium Ca2+), which can be expensive and time consuming. The goal of this paper was to develop a simple method for predicting baseflow buffering chemistry based on the hydrogeomorphic properties of ten nested watersheds in the Neversink River basin (2·0–176·0 km2), an acid‐sensitive basin in the Catskill Mountains, New York State. The tributaries and main reach watersheds have strongly contrasting mean baseflow ANC values and Ca2+ concentrations, despite rather homogeneous vegetation, bedrock geology, and soils. A stepwise regression was applied to relate 13 hydrogeomorphic properties to the mean baseflow ANC values and Ca2+ concentrations. The regression analysis showed that watersheds with lower ANC values had a higher mean ratio of ‘quickflow’ runoff to precipitation during 20 non‐snowmelt runoff events (referred to as mean runoff ratio). The mean runoff ratio could explain at least 80% of the variability in mean baseflow ANC values and Ca2+ concentrations among the ten watersheds. Greater mean runoff ratios also correlated with steeper slopes and greater drainage densities, thus allowing the prediction of baseflow ANC values (r2 = 0·75) and Ca2+ concentrations (r2 = 0·77) with widely available spatial data alone. These results indicate that hydrogeomorphic properties can predict a watershed's sensitivity to acid deposition in regions where the spatial sources of stream buffering chemistry from the bedrock mineralogy and soils are fairly uniform. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
153.
154.
155.
Estimated at ~58 Ma in duration, the Sturtian snowball Earth (ca. 717–659 Ma) is one of the longest‐known glaciations in Earth history. Surprisingly few uncontroversial lines of evidence for glacial incisions associated with such a protracted event exist. We report here multiple lines of geological field evidence for deep but variable glacial erosion during the Sturtian glaciation. One incision, on the scale of several kilometres, represents the deepest incision documented for snowball Earth; another much more modest glacial valley, however, suggests an erosion rate similar to sluggish Quaternary glaciers. The heterogeneity in snowball glacial incisions reported here and elsewhere was likely influenced by actively extending horst‐and‐graben topography associated with the breakup of supercontinent Rodinia.  相似文献   
156.
157.
The final assembly of the Mesoproterozoic supercontinent Nuna was marked by the collision of Laurentia and Australia at 1.60 Ga, which is recorded in the Georgetown Inlier of NE Australia. Here, we decipher the metamorphic evolution of this final Nuna collisional event using petrostructural analysis, major and trace element compositions of key minerals, thermodynamic modelling, and multi-method geochronology. The Georgetown Inlier is characterised by deformed and metamorphosed 1.70–1.62 Ga sedimentary and mafic rocks, which were intruded by c. 1.56 Ga old S-type granites. Garnet Lu–Hf and monazite U–Pb isotopic analyses distinguish two major metamorphic events (M1 at c. 1.60 Ga and M2 at c. 1.55 Ga), which allows at least two composite fabrics to be identified at the regional scale—c. 1.60 Ga S1 (consisting in fabrics S1a and S1b) and c. 1.55 Ga S2 (including fabrics S2a and S2b). Also, three tectono-metamorphic domains are distinguished: (a) the western domain, with S1 defined by low-P (LP) greenschist facies assemblages; (b) the central domain, where S1 fabric is preserved as medium-P (MP) amphibolite facies relicts, and locally as inclusion trails in garnet wrapped by the regionally dominant low-P amphibolite facies S2 fabric; and (c) the eastern domain dominated by upper amphibolite to granulite facies S2 foliation. In the central domain, 1.60 Ga MP–medium-T (MT) metamorphism (M1) developed within the staurolite–garnet stability field, with conditions ranging from 530550°C at 67 kbar (garnet cores) to 620650°C at 89 kbar (garnet rims), and it is associated with S1 fabric. The onset of 1.55 Ga LP–high-T (HT) metamorphism (M2) is marked by replacement of staurolite by andalusite (M2a/D2a), which was subsequently pseudomorphed by sillimanite (M2b/D2b) where granite and migmatite are abundant. P–T conditions ranged from 600 to 680°C and 4–6 kbar for the M2b sillimanite stage. 1.60 Ga garnet relicts within the S2 foliation highlight the progressive obliteration of the S1 fabric by regional S2 in the central zone during peak M2 metamorphism. In the eastern migmatitic complex, partial melting of paragneiss and amphibolite occurred syn- to post- S2, at 730–770°C and 6–8 kbar, and at 750–790°C and 6 kbar, respectively. The pressure–temperature–deformation–time paths reconstructed for the Georgetown Inlier suggest a c. 1.60 Ga M1/D1 event recorded under greenschist facies conditions in the western domain and under medium-P and medium-T conditions in the central domain. This event was followed by the regional 1.56–1.54 Ga low-P and high-T phase (M2/D2), extensively recorded in the central and eastern domains. Decompression between these two metamorphic events is ascribed to an episode of exhumation. The two-stage evolution supports the previous hypothesis that the Georgetown Inlier preserves continental collisional and subsequent thermal perturbation associated with granite emplacement.  相似文献   
158.
Contourite drift systems form a significant component of the marine clastic sedimentary record. Although contourites form in all tectonic settings, few studies have described their development along convergent margins; such characterization is needed to underpin oceanographic and palaeoenvironmental studies in active settings. This study is the first to document contourite drift development along the Hikurangi subduction margin of New Zealand. Integration of bathymetric, seismic and well data enables five classes of drift to be recognized around the subduction wedge, occurring in three principal associations: (i) an upper slope drift association of giant elongate mounded (ca 150 km long, 50 km wide and up to 1100 m thick) and plastered drifts (ca 300 km long, 8 km wide and <600 m thick), which occurs upon and inboard of a major intrabasinal thrust‐cored high, whose long axis parallels the coast; shallow bottom currents disperse sub‐parallel to this axis; (ii) a spatiotemporally discontinuous association of confined and mounded hybrid drifts (ca 500 m long, <2 km wide and up to 500 m thick) that occurs along the mid‐to‐outer slope domain of the wedge, recording the interaction of along‐slope and downslope currents within trench‐slope basins; and (iii) a trench fill assemblage that implies the passage of abyssal bottom currents across a 40 km reach of the trench‐axial Hikurangi Channel‐levée, with associated modification of the channel form and of overbank sediment waves. The fundamental presence of contourites along this margin appears to depend on the orientation and strength of oceanographic bottom currents. However, drift type and evolution vary depending on the slope gradient and the presence of irregular seafloor topography created by tectonic structures. The documented drifts are generally smaller, less continuous, and develop more intermittently than similar styles of drifts documented on passive margins; this mode of occurrence may be characteristic of contourite development on convergent margins.  相似文献   
159.
Natural Hazards - Waves overtop berms and seawalls along the shoreline of Imperial Beach (IB), CA when energetic winter swell and high tide coincide. These intermittent, few-hour long events flood...  相似文献   
160.
The famous Rhaetian bone bed (Late Triassic, 205 Ma) is well known because it marks a major switch in depositional environment from terrestrial red beds to fully marine conditions throughout the UK and much of Europe. The bone bed is generally cemented and less than 10 cm thick. However, we report here an unusual case from Saltford, near Bath, S.W. England where the bone bed is unconsolidated and up to nearly 1 m thick. The exposure of the basal beds of the Westbury Formation, Penarth Group includes a bone bed containing a diverse Rhaetian marine microvertebrate fauna dominated by sharks, actinopterygian fishes and reptiles. Despite the unusual sedimentary character of the bone bed, we find similar proportions of taxa as in other basal Rhaetian bone beds (55–59 % Lissodus teeth, 13–16 % Rhomphaiodon teeth, 12–14 % Severnichthys teeth, 6–9% Gyrolepis teeth, 3–4% undetermined sharks’ teeth, 1–3% undetermined bony fish teeth, and < 1% of each of Hybodus, Parascylloides, and Sargodon), the only differences being in the proportions of Rhomphaiodon teeth, which can represent 30–40 % of specimens elsewhere. This suggests that taphonomic bias of varying Rhaetian bone beds may be comparable despite different sedimentary settings, and that the proportions of taxa say something about their original proportions in the ecosystem.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号