首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   171篇
  免费   9篇
  国内免费   3篇
测绘学   8篇
大气科学   19篇
地球物理   32篇
地质学   87篇
海洋学   17篇
天文学   8篇
综合类   1篇
自然地理   11篇
  2023年   2篇
  2022年   5篇
  2021年   5篇
  2020年   5篇
  2019年   4篇
  2018年   10篇
  2017年   12篇
  2016年   13篇
  2015年   14篇
  2014年   12篇
  2013年   14篇
  2012年   12篇
  2011年   15篇
  2010年   11篇
  2009年   11篇
  2008年   8篇
  2007年   7篇
  2006年   6篇
  2005年   3篇
  2003年   4篇
  2002年   4篇
  1998年   1篇
  1996年   2篇
  1995年   1篇
  1992年   1篇
  1983年   1篇
排序方式: 共有183条查询结果,搜索用时 15 毫秒
21.
22.
Rock glaciers are slowly flowing mixtures of debris and ice occurring in mountains. They can represent a reservoir of water, and melting ice inside them can affect surface water hydrochemistry. Investigating the interactions between rock glaciers and water bodies is therefore necessary to better understand these mechanisms. With this goal, we elucidate the hydrology and structural setting of a rock glacier–marginal pond system, providing new insights into the mechanisms linking active rock glaciers and impounded surface waters. This was achieved through the integration of waterborne geophysical techniques (ground penetrating radar, electrical resistivity tomography and self‐potentials) and heat tracing. Results of these surveys showed that rock glacier advance has progressively filled the valley depression where the pond is located, creating a dam that could have modified the level of impounded water. A sub‐surface hydrological window connecting the rock glacier to the pond was also detected, where an inflow of cold and mineralised underground waters from the rock glacier was observed. Here, greater water contribution from the rock glacier occurred following intense precipitation events during the ice‐free season, with concomitant increasing electrical conductivity values. The outflowing dynamic of the pond is dominated by a sub‐surface seepage where a minor fault zone in bedrock was found, characterised by altered and highly‐fractured rocks. The applied approach is evaluated here as a suitable technique for investigating logistically‐complex hydrological settings which could be possibly transferred to wider scales of investigation. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
23.
Geniculate coralline algae are oases of biodiversity, providing nursery areas and shelter for the species that live amongst their fronds. The key to their success in the inter‐tidal is the ability to withstand hydrodynamic forces. Under culturing conditions most of the physical and ecological stressors such as intense hydrodynamic forces and grazing are extremely reduced, thus affecting species mechanical properties and their response to external threats. The aim of the present study was to investigate tensile mechanical properties of clusters of fronds of Ellisolandia elongata from natural (sheltered and exposed reef) and culturing conditions (after 1 month of culturing). The tensile test showed that the first failure stress (σI) was not significantly different between the natural and culturing conditions, indicating that the two reefs (sheltered and exposed) were characterized by the same distribution of pre‐existing, inherent structural flaws. Interestingly, the σmax (maximum stress before rupture) was significantly different between the two conditions, with the culturing condition being more resistant to average load compared to the natural conditions. The maximum stress before rupture (σmax) showed the influence of the environment in reducing the strength and elasticity of the fronds.  相似文献   
24.
The upper portion of the meadows of the protected Mediterranean seagrass Posidonia oceanica occurs in the region of the seafloor mostly affected by surf-related effects. Evaluation of its status is part of monitoring programs, but proper conclusions are difficult to draw due to the lack of definite reference conditions. Comparing the position of the meadow upper limit with the beach morphodynamics (i.e. the distinctive type of beach produced by topography and wave climate) provided evidence that the natural landwards extension of meadows can be predicted. An innovative model was therefore developed in order to locate the region of the seafloor where the meadow upper limit should lie in natural conditions (i.e. those governed only by hydrodynamics, in absence of significant anthropogenic impact). This predictive model was validated in additional sites, which showed perfect agreement between predictions and observations. This makes the model a valuable tool for coastal management.  相似文献   
25.
Integration of geomorphology, stratigraphy, sedimentology and morphotectonics in the analysis of the lower Cecina River reach, coastal Tuscany, reveals an undocumented historical channel avulsion. Geomorphological evidence and radiocarbon dating support that, from the Last Glacial Maximum until the end of the 16th century, the Cecina River flowed north of the present course and formed a well-developed cuspate delta. Two concurrent factors, active tectonics as a preparing factor and discharge regime as an activation factor, are thus inferred to have favored the avulsion of Cecina River. Fragmentary archaeological and historical records indicate that the late Holocene Cecina River plain was virtually unpopulated until the latest 16th century. This seems the main reason why high-magnitude hydrological events and prominent river channel avulsions were not reported in historical chronicles. From this perspective, geomorphological data may provide important knowledge and understanding of recent dynamics of environmental change when historical record is lacking or missing.  相似文献   
26.
27.
28.
This model is based on the concept of transport concentration, defined as the time-averaged concentration in a given location of a lagoon, which determines the long-term net transport of sediments as the sum of a dispersive and an advective flux. Dispersive net flux of sediments is due to the alternate components of the tidal flow, while the advective net flux of sediments is due to the residual (Eulerian) component of the tidal, fluvial and littoral flow and possibly to the asymmetry between flow and ebb tide.  相似文献   
29.
Reliable automatic procedure for locating earthquake in quasi-real time is strongly needed for seismic warning system, earthquake preparedness, and producing shaking maps. The reliability of an automatic location algorithm is influenced by several factors such as errors in picking seismic phases, network geometry, and velocity model uncertainties. The main purpose of this work is to investigate the performances of different automatic procedures to choose the most suitable one to be applied for the quasi-real-time earthquake locations in northwestern Italy. The reliability of two automatic-picking algorithms (one based on the Characteristic Function (CF) analysis, CF picker, and the other one based on the Akaike’s information criterion (AIC), AIC picker) and two location methods (“Hypoellipse” and “NonLinLoc” codes) is analysed by comparing the automatically determined hypocentral coordinates with reference ones. Reference locations are computed by the “Hypoellipse” code considering manually revised data and tested using quarry blasts. The comparison is made on a dataset composed by 575 seismic events for the period 2000–2007 as recorded by the Regional Seismic network of Northwestern Italy. For P phases, similar results, in terms of both amount of detected picks and magnitude of travel time differences with respect to manual picks, are obtained applying the AIC and the CF picker; on the contrary, for S phases, the AIC picker seems to provide a significant greater number of readings than the CF picker. Furthermore, the “NonLinLoc” software (applied to a 3D velocity model) is proved to be more reliable than the “Hypoellipse” code (applied to layered 1D velocity models), leading to more reliable automatic locations also when outliers (wrong picks) are present.  相似文献   
30.
Modern and effective water management in large alluvial plains that have intensive agricultural activity requires the integrated modeling of soil and groundwater. The models should be complex enough to properly simulate several, often non-linear, processes, but simple enough to be effectively calibrated with the available data. An operative, practical approach to calibration is proposed, based on three main aspects. First, the coupling of two models built on well-validated algorithms, to simulate (1) the irrigation system and the soil water balance in the unsaturated zone and (2) the groundwater flow. Second, the solution of the inverse problem of groundwater hydrology with the comparison model method to calibrate the model. Third, the use of appropriate criteria and cross-checks (comparison of the calibration results and of the model outputs with hydraulic and hydrogeological data) to choose the final parameter sets that warrant the physical coherence of the model. The approach has been tested by application to a large and intensively irrigated alluvial basin in northern Italy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号