首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   159篇
  免费   7篇
  国内免费   1篇
测绘学   2篇
大气科学   11篇
地球物理   41篇
地质学   61篇
海洋学   18篇
天文学   26篇
综合类   1篇
自然地理   7篇
  2024年   1篇
  2023年   3篇
  2022年   3篇
  2021年   1篇
  2020年   4篇
  2019年   4篇
  2018年   7篇
  2016年   9篇
  2015年   7篇
  2014年   8篇
  2013年   21篇
  2012年   2篇
  2011年   15篇
  2010年   7篇
  2009年   8篇
  2008年   10篇
  2007年   4篇
  2006年   5篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2002年   5篇
  2001年   2篇
  2000年   3篇
  1999年   5篇
  1998年   1篇
  1997年   1篇
  1996年   4篇
  1995年   3篇
  1994年   1篇
  1993年   7篇
  1991年   2篇
  1990年   1篇
  1988年   1篇
  1984年   1篇
  1976年   1篇
  1970年   1篇
排序方式: 共有167条查询结果,搜索用时 609 毫秒
151.
We outline a method to determine the direction of solar open flux transport that results from the opening of magnetic clouds (MCs) by interchange reconnection at the Sun based solely on in-situ observations. This method uses established findings about i) the locations and magnetic polarities of emerging MC footpoints, ii) the hemispheric dependence of the helicity of MCs, and iii) the occurrence of interchange reconnection at the Sun being signaled by uni-directional suprathermal electrons inside MCs. Combining those observational facts in a statistical analysis of MCs during solar cycle 23 (period 1995 – 2007), we show that the time of disappearance of the northern polar coronal hole (1998 – 1999), permeated by an outward-pointing magnetic field, is associated with a peak in the number of MCs originating from the northern hemisphere and connected to the Sun by outward-pointing magnetic field lines. A similar peak is observed in the number of MCs originating from the southern hemisphere and connected to the Sun by inward-pointing magnetic field lines. This pattern is interpreted as the result of interchange reconnection occurring between MCs and the open field lines of nearby polar coronal holes. This reconnection process closes down polar coronal hole open field lines and transports these open field lines equatorward, thus contributing to the global coronal magnetic field reversal process. These results will be further constrainable with the rising phase of solar cycle 24.  相似文献   
152.
Abstract— The Noblesville meteorite is a genomict, regolith breccia (H6 clasts in H4 matrix). Mössbauer analysis confirms that Noblesville is unusually fresh, not surprising in view of its recovery immediately after its fall. It resembles “normal” H4–6 chondrites in its chemical composition and induced thermoluminescence (TL) levels. Thus, at least in its contents of volatile trace elements, Noblesville differs from other H chondrite, class A regolith breccias. Noblesville's small pre-atmospheric mass and fall near Solar maximum and/or its peculiar orbit (with perihelion <0.8 AU as shown by natural TL intensity) may partly explain its levels of cosmogenic radionuclides. Its cosmic ray exposure age of ~ 44 Ma, is long, is equalled or exceeded by <3% of all H chondrites, and also differs from the 33 ± 3 Ma mean exposure age peak of other H chondrite regolith breccias. One whole-rock aliquot has a high, but not unmatched, 129Xe/132Xe of 1.88. While Noblesville is now among the chondritic regolithic breccias richest in solar gases, elemental ratios indicate some loss, especially of He, perhaps b; impacts in the regolith that heated individual grains. While general shock-loading levels in Noblesville did not exceed 4 GPa, individual clasts record shock levels of 5–10 GPa, doubtless acquired prior to lithification of the whole-rock meteoroid.  相似文献   
153.
154.
155.
156.
157.
Trace element analysis of Phlegrean Fields volcanic products shows that they belong to a homogeneous series whose evolution is due mainly to fractional crystallization. However quantitative modelling of crystal fractionation using measured mineral/groundmass and computed bulk distribution coefficients singles out K, Sb, Cl and F as elements which are selectively enriched in the differentiation process with respect to proven hygromagmaphile (HYG) elements. This anomalous enrichment involving elements that are easily transported in a magmatic fluid phase is thought to be due to percolation of such a fluid through a stored magma body. This enrichment is strongest in products resulting from protracted differentiation (trachybasalts-latites). Isotopic data from the literature are reinterpreted in terms of this model and show good agreement. Trace elements concentrations in clinopyroxenes provide evidence that complex differentiation paths were followed to produce latitic magmas. Their origin by mixing of magmas from different parentages is not indicated by the data. However, mixing of batches of the same parentage but of different degree of evolution seems likely. Because HYG elements ratios are not modified in the evolution of the magmas, they record these ratios in the partial melting zone. For example, the Th/Ta ratio in the source areas of the magmas has apparently been quite heterogeneous.  相似文献   
158.
This paper proposes a model of serpentinization of the Southern martian crust that may explain the topographic dichotomy, the absence of an associated free-air gravity anomaly and the presence of strong magnetic anomalies in the Southern Hemisphere. The thermodynamical conditions for serpentinization were likely met in the lithosphere during the Noachian period. This process may have decreased the density in the Southern crust and created the topographic dichotomy. Different reactions of serpentinization that can form magnetite have been considered. Assuming an intense magnetic field (core dynamo), we obtain chemical remanent magnetizations that are in the order of the estimates deduced from martian magnetic anomaly studies. The pertinence and the implications of our model concerning the early thermal evolution of Mars are discussed, with emphasis on the intensity of the paleo-magnetic field.  相似文献   
159.
Abstract— Pairing is the procedure of identifying fragments of a single meteorite fall (that were separated during atmospheric passage or during terrestrial history) by establishing the similarity of two or more meteorite fragments. We argue that pairing is governed by two principles, that only a single mismatch of properties is required to refute a proposed pairing, and that virtually all pairings bear some degree of uncertainty. Using data distributions for modern falls, we take a probability approach to estimate degrees of certainty associated with proposed pairings, emphasizing the importance of unusual features. For new pairing criteria or new analytical additions to old criteria, the degree of variation within individual meteorites must be delineated and the degree of variation within meteorite classes must be quantified. Criteria for pairing can be divided into (1) parent body history indicators, (2) meteoroid space history indicators, and (3) terrestrial history indicators. Included in these categories are 11 specific criteria, including petrographic textures, mineralogy and mineral composition, terrestrial age estimates, cosmic‐ray exposure ages, and natural thermoluminescence (TL) levels. Not all criteria are applicable to all meteorite types. About 2275 pairings suggested in the literature have been subjected to this analysis. Many literature pairings, especially those involving common meteorite types, bear large uncertainties due to lack of data.  相似文献   
160.
Spreading‐basin methods have resulted in more than 130 million cubic metres of recharge to the unconfined Navajo Sandstone of southern Utah in the past decade, but infiltration rates have slowed in recent years because of reduced hydraulic gradients and (or) clogging. Trench infiltration is a promising alternative technique for increasing recharge and minimizing evaporation. This paper uses a variably saturated flow model to further investigate the relative importance of the following variables on rates of trench infiltration to unconfined aquifers: saturated hydraulic conductivity, trench spacing and dimensions, initial water‐table depth, alternate wet/dry periods, and number of parallel trenches. Modelling results showed (1) increased infiltration with higher hydraulic conductivity, deeper initial water tables, and larger spacing between parallel trenches, (2) deeper or wider trenches do not substantially increase infiltration, (3) alternating wet/dry periods result in less overall infiltration than keeping the trenches continuously full, and (4) larger numbers of parallel trenches within a fixed area increases infiltration but with a diminishing effect as trench spacing becomes tighter. An empirical equation for estimating expected trench infiltration rates as a function of hydraulic conductivity and initial water‐table depth was derived and can be used for evaluating feasibility of trench infiltration in other hydrogeologic settings. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号