首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1863篇
  免费   147篇
  国内免费   12篇
测绘学   54篇
大气科学   194篇
地球物理   594篇
地质学   715篇
海洋学   134篇
天文学   231篇
综合类   8篇
自然地理   92篇
  2023年   7篇
  2022年   16篇
  2021年   41篇
  2020年   53篇
  2019年   38篇
  2018年   45篇
  2017年   70篇
  2016年   114篇
  2015年   101篇
  2014年   124篇
  2013年   195篇
  2012年   145篇
  2011年   113篇
  2010年   99篇
  2009年   93篇
  2008年   70篇
  2007年   46篇
  2006年   78篇
  2005年   49篇
  2004年   51篇
  2003年   42篇
  2002年   60篇
  2001年   29篇
  2000年   13篇
  1999年   13篇
  1998年   21篇
  1997年   21篇
  1996年   11篇
  1995年   18篇
  1994年   15篇
  1993年   11篇
  1992年   10篇
  1991年   21篇
  1990年   10篇
  1989年   9篇
  1987年   10篇
  1986年   6篇
  1985年   11篇
  1984年   13篇
  1983年   12篇
  1982年   10篇
  1981年   9篇
  1980年   5篇
  1979年   14篇
  1977年   5篇
  1976年   6篇
  1975年   8篇
  1974年   7篇
  1973年   10篇
  1969年   7篇
排序方式: 共有2022条查询结果,搜索用时 484 毫秒
81.
82.
The ecology and diversity of the shallow soft‐bottom areas adjacent to coral reefs are still poorly known. To date, the few studies conducted in these habitats dealing with macroinvertebrate fauna have focused on their abundance spatial patterns at high taxonomic levels. Thus, some aspects important to evaluate the importance and vulnerability of these habitats, such as species diversity or the degree of habitat specialization, have often been overlooked. In this study we compared the crustacean assemblages present in four different habitats at Magoodhoo Island coral reef lagoon (Maldives): coral rubble, sandy areas and two different seagrass species (Thalassia hemprichii and Cymodocea sp.). Forty‐two different crustacean species belonging to 30 families and four orders were found. ‘Site’ was a significant factor in all of the statistical analyses, indicating that tropical soft‐bottom habitats can be highly heterogeneous, even at a spatial scale between tens and hundreds of meters. Although traditionally it has been considered that seagrass beds host greater species diversity and abundance of organisms than adjacent unvegetated habitats, no differences in the univariate measures of fauna (abundance of organisms, number of species and Shannon diversity) were observed among habitats. However, sandy areas, coral rubble and seagrass beds exhibited different species composition of crustacean communities. The percentage of taxa considered as potential habitat specialists was 27% and the number of species exclusively occurring in one habitat was especially high in seagrass beds. Thus, degradation of this vegetated habitat would result in a great loss of biodiversity in tropical shallow soft‐bottom habitats.  相似文献   
83.
Since the advent of Global Navigation Satellite Systems, it has been possible to perform hydrographic survey reductions through the ellipsoid, which has the potential to simplify operations and improve bathymetric products. This technique requires a spatially continuous separation surface connecting chart datum (CD) to a geodetic ellipsoid. The Canadian Hydrographic Service (CHS), with support from the Canadian Geodetic Survey, has developed a new suite of such surfaces, termed Hydrographic Vertical Separations Surfaces, or HyVSEPs, for CD and seven tidal levels. They capture the spatial variability of the tidal datum and levels between tide gauges and offshore using semiempirical models coupling observations at tide stations with relative sea-level rise estimates, dynamic ocean model solutions, satellite altimetry, and a geoid model. HyVSEPs are available for all tidal waters of Canada, covering over seven million square kilometers of ocean and more than 200,000 kilometers of shoreline. This document provides an overview of the CHS's modeling approach, tools, methods, and procedures.

The HyVSEP for CD defines the new hydrographic datum for the tidal waters of Canada. HyVSEPs for other tidal levels are fundamental for coastal studies, climate change adaptation and the definition of the Canadian shoreline and offshore boundaries. HyVSEPs for inland waters are not discussed.  相似文献   

84.
Leaf mechanical traits are important to understand how aquatic plants fracture and deform when subjected to abiotic (currents or waves) or biotic (herbivory attack) mechanical forces. The likely occurrence of variation during leaf ontogeny in these traits may thus have implications for hydrodynamic performance and vulnerability to herbivory damage, and may be associated with changes in morphologic and chemical traits. Seagrasses, marine flowering plants, consist of shoot bundles holding several leaves with different developmental stages, in which outer older leaves protect inner younger leaves. In this study we examined the long‐lived seagrass Posidonia oceanica to determine ontogenic variation in mechanical traits across leaf position within a shoot, representing different developmental stages. Moreover, we investigated whether or not the collection procedure (classical uprooted shoot versus non‐destructive shoot method: cutting the shoot without a portion of rhizome) and time span after collection influence mechanical measurements. Neither collection procedure nor time elapsed within 48 h of collection affected measurements of leaf biomechanical traits when seagrass shoots were kept moist in dark cool conditions. Ontogenic variation in mechanical traits in P. oceanica leaves over intermediate and adult developmental stages was observed: leaves weakened and lost stiffness with aging, while mid‐aged leaves (the longest and thickest ones) were able to withstand higher breaking forces. In addition, younger leaves had higher nitrogen content and lower fiber content than older leaves. The observed patterns may explain fine‐scale within‐shoot ecological processes of leaves at different developmental stages, such as leaf shedding and herbivory consumption in P. oceanica.  相似文献   
85.
The decapod assemblage associated with a Posidonia oceanica meadow located near its western limit of biogeographic distribution was studied over an annual cycle. Fauna samples were taken seasonally over a year (five replicates per season) in two sites located 7 km apart, using a non‐destructive sampling method (airlift sampler) for the seagrass. The dominant species of the assemblage, Pisidia longimana, Pilumnus hirtellus and Athanas nitescens, were associated with the protective rhizome stratum, which is mainly used as a nursery. The correlations between decapod assemblage structure and some phenological parameters of the seagrass shoots and wave height were negative or null, which reflects that species associated with the rhizome had a higher importance than those associated with the leaf stratum. The abundance and composition of the decapod assemblage as well as the ecological indexes displayed a seasonality trend with maximum values in summer‐autumn and minimum in winter‐spring, which were related to the seawater temperature and the recruitment periods of the dominant species. The spatial differences found in the structure and dynamics of the assemblages may be due to variations in the recruitment of the dominant species, probably as a result of the influence of local factors (e.g. temperature, currents) and the high dispersal ability of decapods, together with the patchy configuration and the surrounding habitats. The studied meadows are fragmented and are integrated within a mosaic of habitats (Cymodocea nodosa patches, algal meadows, rocky and sandy bottoms), which promotes the movement of individuals and species among them, maintaining a high species richness and evenness.  相似文献   
86.
Coastal plains are amongst the most densely populated areas in the world. Many coastal peatlands are drained to create arable land. This is not without consequences; physical compaction of peat and its degradation by oxidation lead to subsidence, and oxidation also leads to emissions of carbon dioxide (CO2). This study complements existing studies by quantifying total land subsidence and associated CO2 respiration over the past millennium in the Dutch coastal peatlands, to gain insight into the consequences of cultivating coastal peatlands over longer timescales. Results show that the peat volume loss was 19.8 km3, which lowered the Dutch coastal plain by 1.9 m on average, bringing most of it below sea level. At least 66 % of the volume reduction is the result of drainage, and 34 % was caused by the excavation and subsequent combustion of peat. The associated CO2 respiration is equivalent to a global atmospheric CO2 concentration increase of ~0.39 ppmv. Cultivation of coastal peatlands can turn a carbon sink into a carbon source. If the path taken by the Dutch would be followed worldwide, there will be double trouble: globally significant carbon emissions and increased flood risk in a globally important human habitat. The effects would be larger than the historic ones because most of the cumulative Dutch subsidence and peat loss was accomplished with much less efficient techniques than those available now.  相似文献   
87.
88.
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号