首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24745篇
  免费   174篇
  国内免费   917篇
测绘学   1414篇
大气科学   2021篇
地球物理   4574篇
地质学   11734篇
海洋学   1012篇
天文学   1692篇
综合类   2163篇
自然地理   1226篇
  2020年   4篇
  2019年   4篇
  2018年   4763篇
  2017年   4037篇
  2016年   2587篇
  2015年   239篇
  2014年   86篇
  2013年   32篇
  2012年   992篇
  2011年   2738篇
  2010年   2024篇
  2009年   2322篇
  2008年   1900篇
  2007年   2372篇
  2006年   73篇
  2005年   206篇
  2004年   412篇
  2003年   417篇
  2002年   255篇
  2001年   58篇
  2000年   55篇
  1999年   18篇
  1998年   28篇
  1997年   5篇
  1996年   5篇
  1994年   10篇
  1993年   9篇
  1991年   5篇
  1990年   7篇
  1987年   6篇
  1986年   4篇
  1985年   6篇
  1984年   7篇
  1982年   3篇
  1981年   27篇
  1980年   22篇
  1979年   4篇
  1977年   4篇
  1976年   8篇
  1974年   5篇
  1973年   3篇
  1972年   4篇
  1971年   3篇
  1970年   3篇
  1969年   3篇
  1964年   3篇
  1957年   3篇
  1956年   3篇
  1954年   3篇
  1950年   4篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
151.
The variation of the backscatter strength with the angle of incidence is an intrinsic property of the seafloor, which can be used in methods for acoustic seafloor characterization. Although multibeam sonars acquire backscatter over a wide range of incidence angles, the angular information is normally neglected during standard backscatter processing and mosaicking. An approach called Angular Range Analysis has been developed to preserve the backscatter angular information, and use it for remote estimation of seafloor properties. Angular Range Analysis starts with the beam-by-beam time-series of acoustic backscatter provided by the multibeam sonar and then corrects the backscatter for seafloor slope, beam pattern, time varying and angle varying gains, and area of insonification. Subsequently a series of parameters are calculated from the stacking of consecutive time series over a spatial scale that approximates half of the swath width. Based on these calculated parameters and the inversion of an acoustic backscatter model, we estimate the acoustic impedance and the roughness of the insonified area on the seafloor. In the process of this inversion, the behavior of the model parameters is constrained by established inter-property relationships. The approach has been tested using a 300 kHz Simrad EM3000 multibeam sonar in Little Bay, NH. Impedance estimates are compared to in situ measurements of sound speed. The comparison shows a very good correlation, indicating the potential of this approach for robust seafloor characterization.  相似文献   
152.
Two single-channel seismic (SCS) data sets collected in 2000 and 2005 were used for a four-dimensional (4D) time-lapse analysis of an active cold vent (Bullseye Vent). The data set acquired in 2000 serves as a reference in the applied processing sequence. The 4D processing sequence utilizes time- and phase-matching, gain adjustments and shaping filters to transform the 2005 data set so that it is most comparable to the conditions under which the 2000 data were acquired. The cold vent is characterized by seismic blanking, which is a result of the presence of gas hydrate in the subsurface either within coarser-grained turbidite sands or in fractures, as well as free gas trapped in these fracture systems. The area of blanking was defined using the seismic attributes instantaneous amplitude and similarity. Several areas were identified where blanking was reduced in 2005 relative to 2000. But most of the centre of Bullseye Vent and the area around it were seen to be characterized by intensified blanking in 2005. Tracing these areas of intensified blanking through the three-dimensional (3D) seismic volume defined several apparent new flow pathways that were not seen in the 2000 data, which are interpreted as newly generated fractures/faults for upward fluid migration. Intensified blanking is interpreted as a result of new formation of gas hydrate in the subsurface along new fracture pathways. Areas with reduced blanking may be zones where formerly plugged fractures that had trapped some free gas may have been opened and free gas was liberated.  相似文献   
153.
We collected surface water along the 142nd E meridian from Tasmania to Antarctica in December 1999. We measured temperature, salinity and total chlorophyll a; additionally, we collected suspended particle size fractions and used fluorometric analysis to determine the quantity of chlorophyll a in each of four cell size classes: picoplankton (<3 μm), two nanoplankton fractions (3–10 μm and 10–20 μm) and microplankton (> 20 μm). Changes in temperature and salinity show that we crossed 6 water masses separated by 5 fronts. We found low abundance (<0.2 mg m−3) of chlorophyll in all size classes, with the exception of higher values near the continent (0.2 to 0.4 mg m−3). Lowest chlorophyll values (<0.1 mg m−3) were found in the Polar Frontal Zone (51° to 54°S). Microplankton made up the largest portion of total chlorophyll throughout most of the region. We conclude that biomass of all phytoplankton fractions, especially pico-and nanoplankton, was constrained by limiting factors, most probably iron, throughout the region and that ecosystem dynamics within a zone are not circumpolar but are regionalized within sectors.  相似文献   
154.
The summer distributions of planktonic microbial communities (heterotrophic and phtosynthetic bacteria, phtosynthetic and heterotrophic nanoflagellates, ciliate plankton, and microphytoplankton) were compared between inner and outer areas of Lake Sihwa, divided by an artificial breakwater, located on the western coast of Korea, in September 2003. The semienclosed, inner area was characterized by hyposaline surface water (<17 psu), and by low concentrations of dissolved oxygen (avg. 0.4 mg L1) and high concentrations of inorganic nutrients (nitrogenous nutrients >36 μM, phosphate <4 μM) in the bottom layer. Higher densities of heterotrophic bacteria and nanoflagellates also occurred in the inner area than did in the outer area, while microphytoplankton (mainly diatoms) occurred abundantly in the outer area. A tiny tintinnid ciliate, Tintinnopsis nana, bloomed into more than 106 cells L1 at the surface layer of the inner area, while its abundance was much lower (103-104 cells L1) in the outer area of the breakwater. Ciliate abundance was highly correlated with heterotrophic bacteria (r = 0.886, p < 0.001) and heterotrophic flagellates (r = 0.962, p < 0.001), indicating that rich food availability may have led to theT. nana bloom. These results suggest that the breakwater causes the eutrophic environment in artificial lakes with limited flushing of enriched water and develops into abundant bacteria, nanoflagellates, and ciliates.  相似文献   
155.
The recent sea-ice reduction in the Arctic Ocean is not spatially uniform, but is disproportionally large around the Northwind Ridge and Chukchi Plateau compared to elsewhere in the Canada Basin. In the Northwind Ridge region, Pacific Summer Water (PSW) delivered from the Bering Sea occupies the subsurface layer. The spatial distribution of warm PSW shows a quite similar pattern to the recent ice retreat, suggesting the influence of PSW on the sea-ice reduction. To understand the regionality of the recent ice retreat, we examine the dynamics and timing of the delivery of the PSW into this region. Here, we adopt a two-layer linearized potential vorticity equation to investigate the behavior of Rossby waves in the presence of a topographic discontinuity in the high latitude ocean. The analytical results show a quite different structure from those of mid-latitude basins due to the small value of β. Incident barotropic waves excited by the sea-ice motion with large annual variation can be scattered into both barotropic and baroclinic modes at the discontinuity. Since the scattered baroclinic Rossby wave with annual frequency cannot propagate freely, a strong baroclinic current near the topographic discontinuity is established. The seasonal variation of current near the topographic discontinuity would cause a kind of selective switching system for shelf water transport into the basin. In our simple analytical model, the enhanced northward transport of summer water and reduced northward transport of winter water are well demonstrated. The present study indicates that these basic dynamics imply that a strengthening of the surface forcing during winter in the Canada Basin could cause sea-ice reduction in the Western Arctic through the changes of underlying Pacific Summer Water.  相似文献   
156.
The upper layer (above 140 m depth) temperature in the western Philippine Sea near Taiwan was sampled using a coastal monitoring buoy (CMB) with 15 attached thermistors during July 28–August 7, 2005. The data were collected every 10 min at 1, 3, 5, 10, 15, and 20 m using the CMB sensors, and every 15 sec at 15 different depths between 25 m and 140 m. Internal waves and solitons were identified from the time-depth plot of the temperature field. Without the internal waves and solitons, the power spectra, structure functions, and singular measures (representing the intermittency) of temperature field satisfy the power law with multi-scale characteristics at all depths. The internal waves do not change the basic characteristics of the multifractal structure. However, the internal solitons change the power exponent of the power spectra drastically, especially in the low wave number domain; they also break down the power law of the structure function and increase the intermittency parameter. The physical mechanisms causing these different effects need to be explored further.  相似文献   
157.
A new method is presented to process and correct full-depth current velocity data obtained from a lowered acoustic Doppler current profiler (LADCP). The analysis shows that, except near the surface, the echo intensity of a reflected sound pulse is closely correlated with the magnitude of the difference in vertical shear of velocity between downcast and upcast, indicating an error in velocity shear. The present method features the use of echo intensity for the correction of velocity shear. The correction values are determined as to fit LADCP velocity to shipboard ADCP (SADCP) and LADCP bottom-tracked velocities. The method is as follows. Initially, a profile of velocity relative to the sea surface is obtained by integrating vertical shears of velocity after low-quality data are rejected. Second, the relative velocity is fitted to the velocity at 100–800 dbar measured by SADCP to obtain an “absolute” velocity profile. Third, the velocity shear is corrected using the relationship between the errors in velocity shears and echo intensity, in order to adjust the velocity at sea bottom to the bottom-tracked velocity measured by LADCP. Finally, the velocity profile is obtained from the SADCP-fitted velocity at depths less than 800 dbar and the corrected velocity shear at depths greater than 800 dbar. This method is valid for a full-depth LADCP cast throughout which the echo intensity is relatively high (greater than 75 dB in the present analysis). Although the processed velocity may include errors of 1–2 cm s−1, this method produced qualitatively good current structures in the Northeast Pacific Basin that were consistent with the deep current structures inferred from silicate distribution, and the averaged velocities were significantly different from those calculated by the Visbeck (2002) method.  相似文献   
158.
Mesoscale features in the eastward extension of the Kuroshio were investigated using assimilation of TOPEX/POSEIDON (T/P) data into a three-layer quasi-geostrophic model. The T/P data exhibited an elongated state of the southern recirculation gyre in 1993–95 and 1997, between whose two periods the gyre had a contracted state in 1995–96. A few stationary eddies were located in the southern gyre during the contracted state. The baroclinic instability, which was indicated by the phase shift from the uppermost-to the lowest-layer anomalies toward the downstream side, was evident near the Kuroshio Extension (KE) path. Since the instability never appeared in the artificial model without bottom topography, the topographic barrier for the eastward flow in the lowest layer was a necessary condition for the instability. The instability synchronized with the transition in the western region of the KE axis from the elongated to the contracted states. This evolution was interpreted as if the baroclinic instability played some part in the KE states and was a trigger for the transition from the elongated to the contracted states.  相似文献   
159.
Following our previous study (Sugimoto and Hanawa, 2005b), we further investigate the reason why reemergence of winter sea surface temperature anomalies does not occur in the North Pacific eastern subtropical mode water (NPESTMW) area, despite its occurrence in the North Pacific subtropical mode water and North Pacific central mode water areas. We use vertical temperature and salinity profiles of the World Ocean Circulation Experiment Hydrographic Program and Argo floats with high vertical and temporal resolution, together with heat flux data through the sea surface. We point out first that one of the causes for non-occurrence of reemergence is that the thickness of NPESTMW is very thin. In addition to this basic cause, two major reasons are found: a vigorous mixing in the lower portion of NPESTMW and less heat input from the atmosphere in the warming season. Since, in the lower portion of NPESTMW and deeper, the stratification is favorable for salt-finger type convection to occur compared with the other mode water areas, vigorous mixing takes place. This is confirmed by both a large Turner Angle there and the existence of staircase structures in vertical temperature and salinity profiles. From the viewpoint of heat input, the NPESTMW area gradually gains heat in the warming season compared with other mode water areas. As a result, NPESTMW cannot be capped so quickly by the shallow summer mixed layer, and water properties of NPESTMW are to be gradually modified, even in the upper portion.  相似文献   
160.
A geomorphological and statistical analysis of slope canyons from the northern KwaZulu-Natal continental margin is documented and compared with submarine canyons from the Atlantic margin of the USA. The northern KwaZulu-Natal margin is characterized by increasing upslope relief, concave slope-gradient profiles and features related to upslope growth of the canyon forms. Discounting slope-gradient profile, this morphology is strikingly similar to canyon systems of the New Jersey slope. Several phases of canyon incision indicate that downslope erosion is also an important factor in the evolution of the northern KwaZulu-Natal canyon systems. Despite the strong similarities between the northern KwaZulu-Natal and New Jersey slope-canyon systems, key differences are evident: (1) the concavity of the northern KwaZulu-Natal slope, contrasting with the ∼linear New Jersey slope; (2) the relative isolation of the northern KwaZulu-Natal canyons, rather than the dense clustering of the New Jersey canyons; and (3) the absence of strongly shelf-breaching canyons along the northern KwaZulu-Natal margin. In comparison with the New Jersey margin, we surmise a more youthful stage of canyon evolution, a result of either the canyons themselves being younger or the formative processes being less active. Less complicated patterns of erosion resulting from reduced sediment availability have developed in northern KwaZulu-Natal. The reduction in slope concavity on the New Jersey margin may be the result of grading of the upper slope by intensive headward erosion, a process more subdued—or less evident—on the KwaZulu-Natal margin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号