首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   2篇
大气科学   1篇
地球物理   12篇
地质学   14篇
海洋学   2篇
天文学   1篇
自然地理   7篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2012年   3篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   1篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2002年   2篇
  1999年   1篇
  1997年   1篇
  1996年   2篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
排序方式: 共有37条查询结果,搜索用时 156 毫秒
31.
Variations in the oxygen-isotope composition of paleo-water bodies in the Lake Superior Basin provide information about the timing and pathways of glacial meltwater inflow into and within the Lake Superior Basin. Here, the oxygen-isotope compositions of Lake Superior have been determined using ostracodes from four sediment cores from across the Basin (Duluth, Caribou and Ile Parisienne sub-basins, Thunder Bay trough). The δ18O values indicate that lake water (Lake Minong) at ~10,600–10,400 cal [~9,400–9,250] BP was dominated by glacial meltwater derived from Lake Agassiz and the Laurentide Ice Sheet (LIS). From that time to ~9,000 cal [~8,100] BP, a period associated with formation of thick varves across the Lake Superior Basin, the δ18O values of Lake Minong decreased even further (−24 to −28‰), symptomatic of an increasing influx of glacial meltwater. Its supply was reduced between ~9,000 and ~8,900 cal [~8,100–8,000] BP, and lake water δ18O values grew higher by several per mil during this period. Between ~8,900 and ~8,800 cal [~8,000–7,950] BP, there was a return to δ18O values as low as −29‰ in some parts of the Lake Superior Basin, indicating a renewed influx of glacial meltwater before its final termination at ~8,800–8,700 cal [~7,950–7,900] BP. The sub-basins in the Lake Superior Basin generally displayed very similar patterns of lake water δ18O values, typical of a well-mixed system. The final stage of glacial meltwater input, however, was largely expressed near its input (Thunder Bay trough) and recognizable in dampened form mainly in the Duluth sub-basin to the west. Water in the easternmost Ile Parisienne sub-basin was enriched in 18O relative to the rest of the lake, particularly after ~10,000 cal [~8,900] BP, probably because of a strong influence of local precipitation/runoff, and perhaps also enhanced evaporation. By ~9,200 cal [~8,250] BP, lake water δ18O values in the Ile Parisienne sub-basin were similar to the adjacent Lake Huron Basin, suggesting a strong hydraulic connection between the two water bodies, and common responses to southern Ontario’s shift to warmer and dry climatic conditions after ~9,000 cal [~8,100] BP.  相似文献   
32.
Geomagnetic field motions of Holocene secular variations are investigated using a separation method. The palaeomagnetic secular variations from Britain, North America and Australia have been subjected to maximum-entropy method analyses. Based on the results of spectral analyses, the secular variations are separated by band-pass filters into low-frequency components, generally including the period band 1800-3600 yr, and high-frequency components, generally including the period band 1000-1200 yr. There is an interval, from 4200 to 1700 yr BP, which shows clockwise rotational motions in the low-frequency components of all three sites. Westward drifting of geomagnetic fields may be globally dominant. Swinging or elliptical looping motions constrained to a certain direction were observed in the low-frequency components of the British data. The time duration for the persistence of the swinging motion constrained to a certain direction was 3500 years or so, which could be the lifetime of an oscillating stationary field. The duration of the transitional motion was 1000-1300 years, which may indicate the recurrence time of a stationary field.  相似文献   
33.
Detailed palaeomagnetic integrated with rock magnetic studies have been carried out on a loess-palaeosol sequence in Baoji, Shaanxi province, southern Chinese Loess Plateau. For most samples stepwise thermal demagnetization revealed two well-defined magnetization components. A low-temperature component (LTC), which was isolated between 100 and 200 °C, is consistent with the present geomagnetic field direction. A high-temperature component (HTC), which was isolated between 250 and 620–680 °C, shows normal, reversed or transitional polarities. Our new magnetostatigraphy revealed two distinct geomagnetic excursions recorded in loess unit of L5 and palaeosol unit of S7, respectively, and the Matuyama-Brunhes (M-B) polarity boundary in loess unit of L8. Rock magnetic experiments demonstrated that the specimens from the excursion zones have the same magnetic properties as those from the Brunhes normal or Matuyama reversed polarity zones. Measurements of anisotropy of magnetic susceptibility (AMS) showed that the sediments have primary sedimentary fabrics. Based on the palaeoclimatological and magnetostratigraphic age models, the middle Brunhes excursion in loess L5 is dated at 413–433 ka, and the early Brunhes excursion is estimated to occur 23–33 ka after the M-B reversal. Comparing with previously reported geomagnetic excursions in the Brunhes chron, the middle Brunhes excursion (L5) is likely global. For the early Brunhes excursion (S7), we need further studies to examine its global occurrence.  相似文献   
34.
The pre-Mesozoic metamorphic belt runs parallel to the Day Nui Con Voi - Red River shear zone in Vietnam to the south. The belt is mainly composed of hornblende gneisses, amphibolite lenses and mica-schists. Five hornblendes from a gneiss and an amphibolite were analyzed chemically and chronologically by Electron Probe Micro Analysis (EPMA) and 40Ar/39Ar methods. EPMA analyses show that hornblendes in the gneiss and the amphibolite have significant amount of edenite component and similar average composition. However, the recalculated Fe3+ content is significantly heterogeneous in a thin section while total Fe is nearly the same among the analyses. The rim of each crystal is higher in Fe3+/(Fe3+ + Fe2+) than the core. These chemical and petrological features suggest that the hornblendes have suffered significant oxidation, in particular, largely in the gneiss.

40Ar/39Ar analyses showed that the gneiss has a significant variation of plateau ages (2089±14, 1977±19 and 1873±13 Ma) among three hornblende grains, whereas the amphibolite gives the same plateau ages (2056±14 and 2044±21 Ma) for two grains. All grains of both samples have excess ages in the first few fractions at low temperatures and partial-loss ages between the excess and plateau spectra. The Ca/K ratios indicate some disturbed phases for the lower temperature spectra but the partial-loss ages are also derived from hornblende phase. These facts suggest that hornblende in the gneiss has experienced partial argon loss by oxidation and/or thermally activated argon diffusion process. However, the gneiss and the associated amphibolite have preserved the early Proterozoic tectono-metamorphic event in the hornblende crystals except for their rims, giving new evidence for the early Proterozoic event within the pre-Mesozoic metamorphic belt (northern Vietnam) south of the Red River shear zone in Indochina.  相似文献   

35.
Seasonal snowpack dynamics are described through field measurements under contrasting canopy conditions for a mountainous catchment in the Japan Sea region. Microclimatic data, snow accumulation, albedo and lysimeter runoff are given through the complete winter season 2002–03 in (1) a mature cedar stand, (2) a larch stand, and (3) a regenerating cedar stand or opening. The accumulation and melt of seasonal snowpack strongly influences streamflow runoff during December to May, including winter baseflow, mid‐winter melt, rain on snow, and diurnal peaks driven by radiation melt in spring. Lysimeter runoff at all sites is characterized by constant ground melt of 0·8–1·0 mm day−1. Rapid response to mid‐winter melt or rainfall shows that the snowpack remains in a ripe or near‐ripe condition throughout the snow‐cover season. Hourly and daily lysimeter discharge was greatest during rain on snow (e.g. 7 mm h−1 and 53 mm day−1 on 17 December) with the majority of runoff due to rainfall passing through the snowpack as opposed to snowmelt. For both rain‐on‐snow and radiation melt events lysimeter discharge was generally greatest at the open site, although there were exceptions such as during interception melt events. During radiation melt instantaneous discharge was up to 4·0 times greater in the opening compared with the mature cedar, and 48 h discharge was up to 2·5 times greater. Perhaps characteristic of maritime climates, forest interception melt is shown to be important in addition to sublimation in reducing snow accumulation beneath dense canopies. While sublimation represents a loss from the catchment water balance, interception melt percolates through the snowpack and contributes to soil moisture during the winter season. Strong differences in microclimate and snowpack albedo persisted between cedar, larch and open sites, and it is suggested further work is needed to account for this in hydrological simulation models. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
36.
Metamorphic rocks experience change in the mode of deformation from ductile flow to brittle failure during their exhumation. We investigated the spatial variation of phengite K–Ar ages of pelitic schist of the Sambagawa metamorphic rocks (sensu lato) from the Saruta River area, central Shikoku, to evaluate if those ages are disturbed by faults or not. As a result, we found that these ages change by ca 5 my across the two boundaries between the lower‐garnet and albite–biotite, and the albite–biotite and upper‐garnet zones. These spatial changes in phengite K–Ar ages were perhaps caused by truncation of the metamorphic layers by large‐scale normal faulting at D2 phase under the brittle‐ductile transition conditions (ca 300°C) during exhumation, because an actinolite rock was formed along a fault near the former boundary. Assuming that the horizontal metamorphic layers and a previously estimated exhumation rate of 1 km/my before the D2 phase, the change of 5 my in phengite K–Ar ages is converted to a displacement of about 10 km along the north‐dipping, low‐angle normal fault documented in the previous study. Phengite 40Ar–39Ar ages (ca 85 to 78 Ma) in the actinolite rock could be reasonably comparable to the phengite K–Ar ages of the surrounding non‐faulted pelitic schist, because the K–Ar ages of pelitic schist could have been also reset at temperatures close to the brittle–ductile transition conditions far below the closure temperature for thermal retention of argon in phengite (about 500–600°C).  相似文献   
37.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号