首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   217篇
  免费   18篇
  国内免费   4篇
测绘学   6篇
大气科学   27篇
地球物理   70篇
地质学   76篇
海洋学   9篇
天文学   27篇
综合类   1篇
自然地理   23篇
  2024年   1篇
  2023年   1篇
  2022年   4篇
  2021年   6篇
  2020年   5篇
  2019年   1篇
  2018年   11篇
  2017年   10篇
  2016年   15篇
  2015年   11篇
  2014年   4篇
  2013年   27篇
  2012年   12篇
  2011年   10篇
  2010年   8篇
  2009年   8篇
  2008年   10篇
  2007年   11篇
  2006年   8篇
  2005年   9篇
  2004年   5篇
  2003年   1篇
  2002年   2篇
  2001年   6篇
  2000年   1篇
  1999年   4篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   4篇
  1994年   4篇
  1993年   6篇
  1992年   2篇
  1991年   1篇
  1989年   2篇
  1988年   3篇
  1986年   3篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1968年   3篇
  1958年   1篇
  1955年   1篇
  1950年   1篇
排序方式: 共有239条查询结果,搜索用时 31 毫秒
71.
72.
73.
On November 4, 2007, a large block slide occurred on the south face of the Cerro La Pera at San Juan Grijalva (SJG), northwest Chiapas, Mexico. The SJG landslide has an area of 1.11 km2 and a volume of 50 Mm3, making it one of the largest landslide of its type in the twentieth century. The landslide created a dam over 80 m high and 1,170 m wide across the Grijalva River, backing up the water and forming a 49 km2 lake. Landslide-generated tsunamis up to 15 m high destroyed the village of SJG, and the newly formed lake flooded 21 villages located upstream. The landslide killed 16 people and caused around 3,600 to be evacuated with incalculable economic losses. It was perhaps the most catastrophic landslide in the history of Mexico. The probable trigger of the landslide was cumulative precipitation of about 67% of the average annual rainfall over the preceding 30 days. The associated potentially causative factors include a M4.5 earthquake that occurred 5 days before the landslide and a water-level drawdown at the Grijalva River generated by the release of water from the Pe?itas dam located 14 km downstream.  相似文献   
74.
In this paper, we introduce a new concept of land-surface state representation for southern South America, which is based on "functional" attributes of vegetation, and implement a new land-cover (Ecosystem Functional Type, hereafter EFT) dataset in the Weather and Research Forecasting (WRF) model. We found that the EFT data enabled us to deal with functional attributes of vegetation and time-variant features more easily than the default land-cover data in the WRF. In order to explore the usefulness of the EFT data in simulations of surface and atmospheric variables, numerical simulations of the WRF model, using both the US Geological Survey (USGS) and the EFT data, were conducted over the La Plata Basin in South America for the austral spring of 1998 and compared with observations. Results showed that the model simulations were sensitive to the lower boundary conditions and that the use of the EFT data improved the climate simulation of 2-m temperature and precipitation, implying the need for this type of information to be included in numerical climate models.  相似文献   
75.
The numerical integration of the differential equations describing dynamical systems has been shown in previous papers of this series to be most effectively accomplished by an explicit Taylor series method.In this paper we show that one explicit Taylor series method, developed earlier in this series and which appears to possess a high degree of versatility, yields considerable gains in efficiency over classical single-step and multi-step methods. (In this context efficiency is a measure of the time taken to carry out a calculation of a specific accuracy).For a given accuracy criterion governing the local truncation error (LTE) it is found that the Taylor series method is generallytwice as fast as the classical multi-step method and up totwenty times faster than the classical single-step method.  相似文献   
76.
Hydrogeology Journal - A coupled simulation-optimization model (SOM) is developed in this work that links the US Environmental Protection Agency’s Storm Water Management Model (SWMM) with a...  相似文献   
77.
This work presents analysis of groundwater flow conditions and groundwater control measures for Vazante underground mine located in the state of Minas Gerais, Brazil. According to field observations, groundwater flow processes in this mine are highly influenced by the presence of karst features located in the near-surface terrain next to Santa Catarina River. The karstic features, such as caves, sinkholes, dolines and conduits, have direct contact with the aquifer and tend to increase water flow into the mine. These effects are more acute in areas under the influence of groundwater-level drawdown by pumping. Numerical analyses of this condition were carried out using the computer program FEFLOW. This program represents karstic features as one-dimensional discrete flow conduits inside a three-dimensional finite element structure representing the geologic medium following a combined discrete-continuum approach for representing the karst system. These features create preferential flow paths between the river and mine; their incorporation into the model is able to more realistically represent the hydrogeological environment of the mine surroundings. In order to mitigate the water-inflow problems, impermeabilization of the river through construction of a reinforced concrete channel was incorporated in the developed hydrogeological model. Different scenarios for channelization lengths for the most critical zones along the river were studied. Obtained results were able to compare effectiveness of different river channelization scenarios. It was also possible to determine whether the use of these impermeabilization measures would be able to reduce, in large part, the elevated costs of pumping inside the mine.  相似文献   
78.
79.
Many aquatic environments exhibit soft, muddy substrates, but this important property has largely been ignored in process-based models of Earth-surface flow. Novel laboratory experiments were carried out to shed light on the feedback processes that occur when particulate density currents (turbidity currents) move over a soft mud substrate. These experiments revealed multiple types of flow-bed interaction and large variations in bed deformation and bed erosion, which are interpreted to be related to the interplay between the shear forces of the current and the stabilising forces in the bed. Changes in this force balance were simulated by varying the clay concentrations in the flow and in the bed. Five different interaction types are described, and dimensional and non-dimensional phase diagrams for flow-bed interaction are presented.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号