首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   4篇
  国内免费   6篇
测绘学   12篇
大气科学   7篇
地球物理   30篇
地质学   66篇
天文学   5篇
综合类   1篇
自然地理   5篇
  2024年   1篇
  2023年   1篇
  2022年   6篇
  2021年   3篇
  2020年   2篇
  2019年   2篇
  2018年   13篇
  2017年   6篇
  2016年   12篇
  2015年   4篇
  2014年   4篇
  2013年   7篇
  2012年   3篇
  2011年   2篇
  2010年   5篇
  2009年   7篇
  2008年   1篇
  2007年   2篇
  2006年   3篇
  2005年   5篇
  2004年   3篇
  2003年   4篇
  2002年   2篇
  2001年   4篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1992年   1篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1983年   4篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有126条查询结果,搜索用时 62 毫秒
111.
To support the GPM mission which is homologous to its predecessor, the Tropical Rainfall Measuring Mission (TRMM), this study has been undertaken to evaluate the accuracy of Tropical Rainfall Measuring Mission multi-satellite precipitation analysis (TMPA) daily-accumulated precipitation products for 5 years (2008–2012) using the statistical methods and contingency table method. The analysis was performed on daily, monthly, seasonal and yearly basis. The TMPA precipitation estimates were also evaluated for each grid point i.e. 0.25° × 0.25° and for 18 rain gauge stations of the Betwa River basin, India. Results indicated that TMPA precipitation overestimates the daily and monthly precipitation in general, particularly for the middle sub-basin in the non-monsoon season. Furthermore, precision of TMPA precipitation estimates declines with the decrease of altitude at both grid and sub-basin scale. The study also revealed that TMPA precipitation estimates provide better accuracy in the upstream of the basin compared to downstream basin. Nevertheless, the detection capability of daily TMPA precipitation improves with increase in altitude for drizzle rain events. However, the detection capability decreases during non-monsoon and monsoon seasons when capturing moderate and heavy rain events, respectively. The veracity of TMPA precipitation estimates was improved during the rainy season than during the dry season at all scenarios investigated. The analyses suggest that there is a need for better precipitation estimation algorithm and extensive accuracy verification against terrestrial precipitation measurement to capture the different types of rain events more reliably over the sub-humid tropical regions of India.  相似文献   
112.
The opening of cracks and influx of fluids in the dilatancy zone of impending earthquake is expected to induce short-term changes in physical/chemical/hydrological properties during earthquake build-up cycle, which should be reflected in time-varying geophysical fields. With this rationale, eleven geophysical parameters are being recorded in continuous mode at the Multi-Parametric Geophysical Observatory (MPGO), in Ghuttu, Garhwal Himalaya, for earthquake precursory research. The critical analysis of various geophysical time series indicates anomalous behavior at few occasions; however, the data is also influenced by many external forces. These external influences are the major deterrent for the isolation of precursory signals. The recent work is focused on the data adoptive techniques to estimate and eliminate effects of solar-terrestrial and hydrological/environmental factors for delimiting the data to identify short-term precursors. Although any significant earthquake is not reported close to the observatory, some weak precursory signals and coseismic changes have been identified in few parameters related to the occurrence of moderate and strong earthquakes.  相似文献   
113.
The objective of this study was to compare the laboratory slaking behavior of common clay-bearing rocks to their slaking behavior under natural climatic conditions observed during a 1-year experimental study. Five-cycle slake durability tests were performed in the laboratory on five claystones, five mudstones, five siltstones, and five shales. Twelve replicate specimens of each of these 20 rocks were also exposed to natural climatic conditions for 12 months. After each month of exposure, one replicate specimen of each rock was removed from natural exposure and its grain size distribution was determined. The results of laboratory tests and field experiment were compared in terms of 1st, 2nd, 3rd, 4th, and 5th cycle slake durability indices (Id1, Id2, Id3, Id4, Id5), grain size distribution of slaked material, and disintegration ratio (D R), where D R is the ratio of the area under the grain size distribution curve of slaked material for a given specimen to the total area encompassing all grain size distribution curves of the specimens tested. Correlations of Id1, Id2, Id3, Id4, and Id5 with D R values for laboratory specimens exhibit R 2 values of 0.87, 0.88, 0.83, 0.75, and 0.70, respectively. However, the relationship between Id2 and D R, determined after 1, 3, 6, and 12 months of natural exposure, becomes weaker with increasing time of exposure, with R 2 values of 0.65, 0.63, 0.63, and 0.25, respectively. The fifth-cycle slake durability index (Id5) for laboratory tested specimens shows a better correlation with D R values for naturally exposed specimens (R 2 up to 0.80). A comparison of grain size distribution curves of slaked material for laboratory specimens, after the 2nd cycle slake durability test, with those of specimens exposed to natural climatic conditions shows that the laboratory test underestimates the field durability for claystones, and overestimates it for siltstones.  相似文献   
114.
115.
116.
喜马拉雅碰撞造山过程:变质地质学视角   总被引:1,自引:0,他引:1  
本文从变质地质学视角出发,介绍了喜马拉雅造山带的研究意义、地质概况和近年来作者在喜马拉雅碰撞造山过程研究中的进展。喜马拉雅造山带是威尔逊旋回中陆陆碰撞造山带的典型代表,从中揭示的大陆碰撞造山过程、规律及效应,可为探索地球从古至今的碰撞造山带演化研究所借鉴。其中,大陆碰撞造山机制的研究是其核心内容。大陆碰撞造山机制存在临界楔和隧道流两种端元模型之争,其分别对造山带核部高级变质岩折返的P T t轨迹和时空演化序列进行了不同的预测。上述争议可通过研究喜马拉雅核部高级变质岩(高喜马拉雅)的P T t轨迹和折返过程来限定,据此可将喜马拉雅碰撞造山过程划分为三个演化阶段。阶段一:60~40 Ma,软碰撞期,造山带地壳加厚至约40 km并发生小规模部分熔融,这些早期地壳加厚记录大多已被剥蚀,零星保存于前陆飞来峰和北喜马拉雅片麻岩穹隆中;喜马拉雅山从海平面以下抬升至>1000 m。阶段二:40~16 Ma,硬碰撞期,造山带地壳加厚至60~70 km,发生大规模高级变质和深熔作用,高喜马拉雅内部的三个次级岩片沿着“原喜马拉雅逆冲断层”、“高喜马拉雅逆冲断层”、“主中央逆冲断层”顺序式向南挤出,形成了现今喜马拉雅造山带的核部主体,地壳堆叠使喜马拉雅山快速隆升至≥5000 m。阶段三:16~0 Ma,晚碰撞期,造山带山根榴辉岩化发生局部拆沉,但大陆汇聚仍在持续、造山带尚未发生垮塌,小喜马拉雅折返、前陆盆地形成,喜马拉雅山达到和维持现今平均高度~6000 m。因此,喜马拉雅生长过程的一级次序是顺序式向南扩展的,受控于临界楔模型,而隧道流只起次级作用。山根深部热流过程对造山带的地壳结构和地表高程有巨大的改造作用。未来对喜马拉雅造山带的变质地质学研究可能存在以下几个关键科学问题:① 喜马拉雅极端变质作用与重大碰撞造山事件的关联;② 喜马拉雅稀有金属成矿与接触变质作用的关联;③ 喜马拉雅变质脱碳作用与大陆碰撞带深部碳循环和通量。  相似文献   
117.
The Pranhita-Godavari (PG) Valley, a major lineament within the South Indian cratonic province, that preserves sediment dominated deposits spanning from Mesoproterozoic to Mesozoic, appears to be a key element in supercontinent reconstruction. The sedimentary basins of the Valley include a thick succession of Early Mesoproterozoic to Late Neoproterozoic rocks, the Godavari Supergroup, which is unconformably overlain by the Late Palaeozoic-Mesozoic Gondwana sequence. The Godavari Supergroup is internally punctuated by several regional and interregional unconformities into a number of unconformity-bound sequences having group level and subgroup level status. The lithostratigraphic attributes of the succession indicate multiple events of fault controlled sedimentation marked by transgression and regression, as well as uneven rates of uplift and subsidence of the basin floor in an extensional tectonic regime. The amplitude of translation of the unconformity surfaces across the base level attests to collective role of tectonic movement and sea level changes in building the stratigraphic framework of the Valley. The stratigraphic framework and depositional systems, such as fan and fan-deltas, together with local outburst of felsic volcanism further indicate repeated rifting of the craton.Geochronologic data indicate that the rift basin started to open in Early Mesoproterozoic, concomitantly with the breakup of the Mesoproterozoic supercontinent during which the India and East Gondwana fragments were separated. The spatial variation in the declivity of the unconformity surfaces, and the trend of thickness variation of the unconformity-bound sequences point that the basin deepened and opened towards southeast to join an ocean that developed between the South Indian craton and East Antarctica. The contractional deformation structures preserved in several lithounits were produced under NE-SW directed regional compression during Late Neoproterozoic basin inversion.  相似文献   
118.
119.
Given the wealth of data concerning the kinematics of deforming fold-thrust belts (FTBs), first-order generalizations about how the major strain components vary within a deforming thrust wedges are considered. These generally observed strain patterns are used to constrain a general, kinematics-based, FTB-wedge model. We considered five strain components within a deforming thrust sheet: (1) thrust-parallel simple shear, (2) horizontal contractional strain, (3) thrust-normal reaction strain, (4) gravitational strain, and (5) a lateral confining boundary condition. After making assumptions about how these strain components vary within a model FTB-wedge, the incremental deformation matrix can be calculated for any given point within the deforming wedge. Thus, the material path of a given marker can be determined and an initially spherical marker’s strain path can be calculated as it moves through the deforming wedge. Furthermore, by illustrating various kinematic parameters of many initially spherical markers (for example, Flinn’s k-value, incremental octahedral shear strain, transport-perpendicular stretch), we have assembled representations of the kinematic properties of the entire model wedge. By including a flat-ramp-flat fault surface geometry for the model wedge, we are able to examine the kinematic effects of this relatively common structural geometry. Within the fault ramp segment there are greater incremental strain magnitudes, out-of-the-plane motion, and flattening strains. Additionally, data from this model suggests that gravitational strains potentially have a significant effect on the strain distribution within a deforming thrust wedge. M. Mookerjee is formerly Matthew Strine.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号