首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Using statistical methods and contingency table method, this paper evaluates the accuracy of 12 years (1998–2009) Tropical Rainfall Measuring Mission Multisatellite Precipitation Analysis (TMPA) daily-accumulated precipitation products within a year, the dry season, and rain season for each of the five subbasins and for each grid point (0.25?×?0.25°) in the Lancang River basin by comparing the results with data from the 35 rain gauges. The results indicate that TMPA daily precipitation estimates tend to show an underestimation comparing to the rain gauge daily precipitations under any scenarios, especially for the middle stream in the dry season. The accuracy of TMPA-averaged precipitation deteriorates with the increase of elevation at both basin and grid scale, with upstream and downstream having the worst and best accuracy, respectively. A fair capability was shown when using daily TMPA accumulations to detect rain events at drizzle rain and this capability improves with the increase of elevation. However, the capability deteriorates when it is used to detect moderate rain and heavy rain events. The accuracy of TMPA precipitation estimate products is better in the rain season than in the dry season at all scenarios. Time difference and elevation are the main factors that have impact on the accuracy of TMPA daily-accumulated precipitation products.  相似文献   

2.
In the present study, an attempt has been made to validate the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA)-3B42 recently released version 7 product over the tropical Indian Ocean using surface rain gauges from the National Oceanic and Atmospheric Administration/Pacific Marine Environmental Laboratory Research Moored Array for African–Asian–Australian Monsoon Analysis and Prediction buoy array available since late 2004. The validation exercise is carried out at daily scale for an 8-year period of 2004–2011. Results show statistically significant linear correlation between these two precipitation estimates ranging from 0.40 to 0.89 and the root-mean-square error varies from about 1 to 22 mm day?1. Although systematic overestimation of precipitation by the TMPA product is evident over most of the buoy locations, the TMPA noticeably underestimates higher (more than 100 mm day?1) and light (less than 0.5 mm day?1) precipitation events. The highest correlation is observed during the southwest monsoon season (June–September) even though bias is the maximum possibly due to relatively lower fraction of stratiform precipitation during the monsoon season than other seasons. Furthermore, the TMPA estimates slightly underestimate or misses intermittent warm precipitation events as compared to the precipitation radar derived precipitation rates.  相似文献   

3.
In the present study, an attempt has been made to estimate and validate the daily and monthly rainfall during the Indian summer monsoon seasons of 2008 and 2009 using INSAT (Indian National Satellite System) Multispectral Rainfall Algorithm (IMSRA) technique utilizing Kalpana-1 very high resolution radiometer (VHRR) measurements. In contrary to infrared (IR), microwave (MW) rain rates are based on measurements that sense precipitation in clouds and do not rely merely on cloud top temperature. Geostationary satellites provide broad coverage and frequent refresh measurements but microwave measurements are accurate but sparse. IMSRA technique is the combination of the infrared and microwave measurements which make use of the best features of both IR- and MW-based rainfall estimates. The development of this algorithm included two major steps: (a) classification of rain-bearing clouds using proper cloud classification scheme utilizing Kalpana-1 IR and water vapor (WV) brightness temperatures (Tb) and (b) collocation of Kalpana-1 IR brightness temperature with Tropical Rainfall Measuring Mission (TRMM)-Precipitation Radar (PR) surface rain rate and establishment of a regression relation between them. In this paper, the capability of IMSRA as an operational algorithm has been tested for the two monsoon seasons 2008 and 2009. For this, IMSRA has been used to estimate daily and monthly rainfall and has been intercompared on daily and monthly scales with TRMM Multisatellite Precipitation Analysis (TMPA)-3B42 V6 product and Global Precipitation Climatology Project (GPCP) rain product during these two monsoon years. The daily and monthly IMSRA rainfall has also been validated against ground-based observations from Automatic Weather Station (AWS) Rain Gauge and Buoy data. The algorithm proved to be in good correlation with AWS data over land up to 0.70 for daily rain estimates except orographic regions like North-East and South-West India and 0.72 for monthly rain estimates. The validation with Buoys gives the reasonable correlation of 0.49 for daily rain estimates and 0.66 for monthly rain estimates over Tropical Indian Ocean.  相似文献   

4.
This study presented a detailed comparison of daily precipitation estimates from Precipitation Estimation from Remote Sensing Information using Artificial Neural Network (PERSIANN) and Tropical Rainfall Measuring Mission (TRMM) Multi -satellite Precipitation Analysis (TMPA) over Hunan province of China from 1998 to 2014. The ground gauge observations are taken as the reference. It is found that overall TMPA clearly outperforms PERSIANN, indicating by better statistical metrics (including correlation coefficient, root mean square error and relative bias). For the geospatial pattern, although both products are able to capture the major precipitation features (e.g., precipitation geospatial homogeneity) in Hunan, yet PERSIANN largely underestimates the precipitation intensity throughout all seasons. In contrast, there is no clear bias tendency from TMPA estimates. Precipitation intensity analysis showed that both the occurrence and amount histograms from TMPA are closer to the gauge observations from spring to autumn. However, in the winter season PERSIANN is closer to gauge observation, which is likely due to the ground contamination from the passive microwave sensors used by TMPA.  相似文献   

5.
This paper presents the validation of monthly precipitation using Tropical Rainfall Measuring Mission Multisatellite Precipitation Analysis (TMPA)—3B43 product with conventional rain gauge observations for the period 1998–2007 over Kyrgyzstan. This study is carried out to quantify the accuracy of TMPA-3B43 product over the high latitude and complex orographic region. The present work is quite important because it is highly desirable to compare the TMPA precipitation product with the ground truth data at a regional scale, so that the satellite product can be fine-tuned at that scale. For the validation, four different types of spatial collocation have been used: station wise, climatic zone wise, topographically and seasonal. The analysis has been done at the same spatial and temporal scales in order to eliminate the sampling biases in the comparisons. The results show that TMPA-3B43 product has statistically significant correlation (r?=?0.36–0.88) with rain gauge data over the most parts of the country. The minimum linear correlation is observed around the large continental water bodies (e.g., Issyk-Kul lake; r?=?0.17–0.19). The overall result suggests that the precipitation estimated using TMPA-3B43 product performs reasonably well over the plain regions and even over the orographic regions except near the big lake regions. Also, the negative bias suggests the systematic underestimation of high precipitation by TMPA-3B43 product. The analyses suggest the need of a better algorithm for precipitation estimation over this region separately to capture the different types of rain events more reliably.  相似文献   

6.
Daily precipitation amounts and frequencies from the CMORPH (Climate Prediction Center Morphing Technique) and TRMM (Tropical Rainfall Measuring Mission) 3B42 precipitation products are validated against warm season in-situ precipitation observations from 2003 to 2008 over the Tibetan Plateau and the regions to its east. The results indicate that these two satellite datasets can better detect daily precipitation frequency than daily precipitation amount. The ability of CMORPH and TRMM 3B42 to accurately detect daily precipitation amount is dependent on the underlying terrain. Both datasets are more reliable over the relatively flat terrain of the northeastern Tibetan Plateau, the Sichuan basin, and the mid-lower reaches of the Yangtze River than over the complex terrain of the Tibetan Plateau. Both satellite products are able to detect the occurrence of daily rainfall events; however, their performance is worse in regions of complex topography, such as the Tibetan Plateau. Regional distributions of precipitation amount by precipitation intensity based on TRMM 3B42 are close to those based on rain gauge data. By contrast, similar distributions based on CMORPH differ substantially. CMORPH overestimates the amount of rain associated with the most intense precipitation events over the mid-lower reaches of the Yangtze River while underestimating the amount of rain associated with lighter precipitation events. CMORPH underestimates the amount of intense precipitation and overestimates the amount of lighter precipitation over the other analyzed regions. TRMM 3B42 underestimates the frequency of light precipitation over the Sichuan basin and the mid-lower reaches of the Yangtze River. CMORPH overestimates the frequencies of weak and intense precipitation over the mid-lower reaches of the Yangtze River, and underestimates the frequencies of moderate and heavy precipitation. CMORPH also overestimates the frequency of light precipitation and underestimates the frequency of intense precipitation over the other three regions. The TRMM 3B42 product provides better characterizations of the regional gamma distributions of daily precipitation amount than the CMORPH product, for which the cumulative distribution functions are biased toward lighter precipitation events.  相似文献   

7.
The arid region of northwest China is a large area with complex topography. Hydrological research is limited by scarcity and uneven distribution of rain gauges. Satellite precipitation products provide wide coverage and high spatial–temporal resolutions, but the accuracy needs to be evaluated before application. In this paper, the reliability of four satellite precipitation products (CMORPH [Climate Prediction Center’s morphing technique], PERSIANN [Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks], TRMM [Tropical Rainfall Measuring Mission] 3B42, and TRMM 3B43) were evaluated through comparison with ground data or reported values on daily, monthly, and annual scales from 2003 to 2010. Indices including frequency bias index, probability of detection, and false alarm ratio were used to evaluate recorded precipitation occurrences; relative mean bias, the correlation coefficient, and the Nash coefficient were used to assess precipitation amount. Satellite precipitation products were more accurate in the warm than in the cold season, and performed better in northern Xinjiang than in other regions during the cold season. CMORPH and PERSIANN tended to overestimate precipitation. TRMM 3B42 and TRMM 3B43 performed best because the former most accurately detected precipitation occurrences on a daily scale, and both produced accurate space–time distribution of precipitation and the best consistency with rain gauge observations. Only a few monthly precipitation values for TRMM 3B42 and TRMM 3B43, and annual precipitation values for TRMM 3B42 were with satisfactory precision. TRMM3B42 and TRMM 3B43 are therefore recommended, but correction will be needed before application. Factors including elevation, relative relief, longitude, and latitude had significant effects on the performance of satellite precipitation products, and these factors may be helpful in correcting satellite precipitation.  相似文献   

8.
Using high-quality hourly observations from national-level ground-based stations, the satellite-based rainfall products from both the Global Precipitation Measurement (GPM) Integrated MultisatellitE Retrievals for GPM (IMERG) and its predecessor, the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA), are statistically evaluated over the Tibetan Plateau (TP), with an emphasis on the diurnal variation. The results indicate that: (1) the half-hourly IMERG rainfall product can explicitly describe the diurnal variation over the TP, but with discrepancies in the timing of the greatest precipitation intensity and an overestimation of the maximum rainfall intensity over the whole TP. In addition, the performance of IMERG on the hourly timescale, in terms of the correlation coefficient and relative bias, is different for regions with sea level height below or above 3500 m; (2) the IMERG products, having higher correlation and lower root-mean-square error, perform better than the TMPA products on the daily and monthly timescales; and (3) the detection ability of IMERG is superior to that of TMPA, as corroborated by a higher Hanssen and Kuipers score, a higher probability of detection, a lower false alarm ratio, and a lower bias. Compared to TMPA, the IMERG products ameliorate the overestimation across the TP. In conclusion, GPM IMERG is superior to TRMM TMPA over the TP on multiple timescales.  相似文献   

9.
This study focuses on the evaluation of 3-hourly 0.25° × 0.25° satellite-based rainfall estimates produced by the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA). The evaluation is performed during six heavy rainfall events that were generated by tropical storms passing over Louisiana, United States. Two surface-based rainfall datasets from gauge and radar observations are used as a ground reference for evaluating the real-time (RT) version of the TMPA product and the post-real-time bias adjusted research version. The evaluation analysis is performed at the native temporal and spatial scales of the TMPA products, 3-hourly and 0.25° × 0.25°. Several graphical and statistical techniques are applied to characterize the deviation of the TMPA estimates from the reference datasets. Both versions of the TMPA products track reasonably well the temporal evolution and fluctuations of surface rainfall during the analyzed storms with moderate to high correlation values of 0.5–0.8. The TMPA estimates reported reasonable levels of rainfall detection especially when light rainfall rates are excluded. On a storm scale, the TMPA products are characterized by varying degrees of bias which was mostly within ± 25% and ± 50% for the research and RT products, respectively. Analysis of the error distribution indicated that, on average, the TMPA products tend to overestimate small rain rates and underestimate large rain rates. Compared to the real-time estimates, the research product shows significant improvement in the overall and conditional bias, and in the correlation coefficients, with slight deterioration in the probability of detecting rainfall occurrences. A fair agreement in terms of reproducing the tail of the distribution of rain rates (i.e., probability of surface rainfall exceeding certain thresholds) was observed especially for the RT estimates. Despite the apparent differences with surface rainfall estimates, the results reported in this study highlight the TMPA potential as a valuable resource of high-resolution rainfall information over many areas in the world that lack capabilities for monitoring landfalling tropical storms.  相似文献   

10.

This study investigates the ability of the regional climate model Weather Research and Forecasting (WRF) in simulating the seasonal and interannual variability of hydrometeorological variables in the Tana River basin (TRB) in Kenya, East Africa. The impact of two different land use classifications, i.e., the Moderate Resolution Imaging Spectroradiometer (MODIS) and the US Geological Survey (USGS) at two horizontal resolutions (50 and 25 km) is investigated. Simulated precipitation and temperature for the period 2011–2014 are compared with Tropical Rainfall Measuring Mission (TRMM), Climate Research Unit (CRU), and station data. The ability of Tropical Rainfall Measuring Mission (TRMM) and Climate Research Unit (CRU) data in reproducing in situ observation in the TRB is analyzed. All considered WRF simulations capture well the annual as well as the interannual and spatial distribution of precipitation in the TRB according to station data and the TRMM estimates. Our results demonstrate that the increase of horizontal resolution from 50 to 25 km, together with the use of the MODIS land use classification, significantly improves the precipitation results. In the case of temperature, spatial patterns and seasonal cycle are well reproduced, although there is a systematic cold bias with respect to both station and CRU data. Our results contribute to the identification of suitable and regionally adapted regional climate models (RCMs) for East Africa.

  相似文献   

11.
以白龙江流域为研究区,利用雨量站和水文站共计27个站点2015年逐日降水资料,分别从日尺度和月尺度定量评估了最新版本(V6)GSMa P__Gauge降水产品精度,并分析其时空特征,通过对探测率、空报率和ETS评分进行空间插值和统计分析,评价了该产品对不同日降水强度阈值下降水事件的探测性能。结果表明:GSMaP__Gauge产品日降水在低海拔湿半年的反演精度良好;月降水模拟值在干半年(10月—次年3月)与站点实测月降水的一致性优于湿半年(4—9月);湿半年月降水反演精度随高程变化差异明显,在低海拔表现为普遍高估月降水,且逐月精度评估结果与高海拔相比偏差大但误差略小,8月精度较优;日降水强度阈值为0 mm·d-1时,产品的探测率在湿半年达到0.9以上,综合空报率和ETS评分来看,在日降水强度阈值为1 mm·d-1时探测性能最优;整体而言,产品在流域西北部高海拔区域对日降水事件探测性能较差,尤其针对较强降水(10 mm·d-1)。  相似文献   

12.
TRMM测雨雷达对1998年东亚降水季节性特征的研究   总被引:16,自引:0,他引:16  
利用热带测雨计划卫星上的测雨雷达得到的降水资料,对1998年东亚降水,特别是中国大陆东部、东海和南海的降水,进行了分析研究,并对比了热带降水研究结果。年统计结果表明,东亚地区层状云降水出现概率极高(比面积达83.7%),对流云降水的比面积仅占13.6%,然而两者对总降水量的贡献相当。结果还表明,暖对流云降水出现的比例和对总降水量的贡献很小。在季节尺度,对流云和层状云降水的比与两者的面积比成比例关系。除夏季外,测雨雷达降水量与GPCP降水量可比性好。研究结果还指出:在中纬度陆地和海洋上对流云和层状云的比降水量和比面积呈相反方向作季节性南北移动,这一活动与东亚季风变化一致;该地区降水的季节性变化还表现为降水垂直廓线的变化。除冬季外,南海地区降水垂直结构呈热带特征。CRAD分析表明,对流云降水的地面雨强变化大,尤其在陆地上,而层状云多表现为地面弱降水。  相似文献   

13.
This paper presents a study on the temporal and spatial variations of the precipitation over the area of the South China Sea (SCS) during the monsoon onset period. The data used are from the Tropical Rainfall Measuring Mission (TRMM) observations between April and June over the nine years from 1998 to 2006. This study focuses on the central and northern part of South China Sea (110-120°E, 10-20°N). Based on the observations, the 27th pentad is selected as the occurrence time of the SCS monsoon onset. The conclusions are as follows. (1) After the monsoon onset, the specific area, defined as the ratio of the number of pixels with certain type of precipitation to the number of total pixels, extends significantly for both convective and stratiform rain, with the latter having a larger magnitude. The specific rainfall, defined as the ratio of the amount of certain type of precipitation to the total amount of precipitation, decreases for convective rain and increases for stratiform rain. (2) Results also show significant increase in heavy rain and decrease in light rain after the monsoon onset. (3) Changes are also observed in the rainfall horizontal distributions over the SCS before and after the monsoon onset, manifested by the relocation of precipitation minima for both convective and stratiform rain. (4) After the monsoon onset, the variability in characteristics of precipitation vertical structure increases significantly, leading to more latent heat release and consequently deeper convection. Meanwhile, the bright-band altitude of stratiform precipitation is also elevated.  相似文献   

14.
用TRMM资料研究1998年长江流域暴雨   总被引:18,自引:0,他引:18  
热带测雨卫星TRMM资料于1998年6月起向公众用户开放。本文使用了1998年7月20日世界时21:40分的TRMM资料对长江流域暴雨作了初步研究。TRMM导出的降水产品亦与雨量计,地面雷达观测以及数值模拟结果进行了比较。由此得出,TRMM资料非常适合于暴雨监测研究。此外,它们还有其他广泛得用途。  相似文献   

15.
青藏高原与四川盆地夏季降水日变化的对比分析   总被引:8,自引:0,他引:8       下载免费PDF全文
采用2006-2008年自动气象站和2002-2008年TRMM(Tropical Rainfall Measurement Mis-sion)多卫星降水分析(Munti-satellite Precipitation Analysis,TMPA)的夏季(6~8月)逐时降水量资料,分析了青藏高原(下称高原)及周边地区夏...  相似文献   

16.
Satellite-based precipitation products (SPPs) have greatly improved their applicability and are expected to offer an alternative to ground-based precipitation estimates in the present and the foreseeable future. There is a strong need for a quantitative evaluation of the usefulness and limitations of SPPs in operational meteorology and hydrology. This study compared two widely used high-resolution SPPs, the Tropical Rainfall Measuring Mission (TRMM) and Precipitation Estimation from Remote Sensing Information using Artificial Neural Network (PERSIANN) in Poyang Lake basin which is located in the middle reach of the Yangtze River in China. The bias of rainfall amount and occurrence frequency under different rainfall intensities and the dependence of SPPs performance on elevation and slope were investigated using different statistical indices. The results revealed that (1) TRMM 3B42 usually underestimates the rainy days and overestimates the average rainfall as well as annual rainfall, while the PERSIANN data were markedly lower than rain gauge data; (2) the rainfall contribution rates were underestimated by TRMM 3B42 in the middle rainfall class but overestimated in the heavy rainfall class, while the opposite trend was observed for PERSIANN; (3) although the temporal distribution characteristics of monthly rainfall were correctly described by both SPPs, PERSIANN tended to suffer a systematic underestimation of rainfall in every month; and (4) the performances of both SPPs had clear dependence on elevation and slope, and their relationships can be fitted using quadratic equations.  相似文献   

17.
用华南暴雨试验雨量资料对TRMM/TMI-85.5GHz测雨能力的考察   总被引:7,自引:4,他引:7  
利用华南暴雨试验期间稠密的雨量资料对热带测雨卫星(TRMM)微波成像仪(TMI)频率为85.5GHz(波长0.35cm)的测雨能力进行了考察。通过TMI-85.5GHz亮温分布和一小时雨量分布的对比发现,对流性降水的强雨量中心与TMI-85.5GHz亮温的低值区有很的对应关系,雨带分布和低亮温分布的位置及形状都很相似,雨强的大小和亮温的关系也相当密切:雨强越大,亮温值越低。亮温数值和雨强(指每小时雨量,下同)的相关统计进一步表明:雨强的大小与亮温呈明显的负相关,特别是当雨强达到或超达7mm/h时的相关程度非常显著,从而确认了TMI-85.5GHz的微波遥感对对流性强降水有较好的测雨能力。  相似文献   

18.
The capacity of Tropical Rainfall Measuring Mission (TRMM) Satellite for measuring rainfall was examined by using TMI-85.5 GHz microwave image data and precipitation data during a heavy rainfall experiment in southern China. From comparisons with the distribution of rain amount in an hour with BB T of 85.5 GHz microwave, it is clear that the center of heavy rain corresponds with an area of low BB T value. The location and shape of BB T distribution is similar to that of precipitation, and the larger the rainfall rates, the lower the BB T . A statistic analysis shows that the correlation coefficients between BB T and rain rates is negative and significant. Especially, when the rain rate is over 7 mm/h, the correlation degree between BB T and rain rates is more significant. The results shows that TRMM/TMI-85.5 G has great ability to measure convective heavy rain.  相似文献   

19.
Validation of satellite rainfall products over Greece   总被引:3,自引:0,他引:3  
Six widely available satellite precipitation products were extensively validated and intercompared on monthly-to-seasonal timescales and various spatial scales, for the period 1998–2006, using a dense station network over Greece. Satellite products were divided into three groups according to their spatial resolution. The first group had high spatial (0.5°) resolution and consists only of Tropical Rainfall Measuring Mission (TRMM) products: the TRMM Microwave Imager (TMI) precipitation product (3A12) and the TRMM multisatellite precipitation analysis products (3B42 and 3B43). The second group comprised products with medium spatial (1°) resolution. These products included the TRMM 3B42 and 3B43 estimates (remapped to 1° resolution) and the Global Precipitation Climatology Project one-degree daily (GPCP-1DD) analysis. The third group consisted of low spatial (2.5°) resolution products and included the 3B43 product (remapped to 2.5° resolution), the GPCP Satellite and Gauge (GPCP-SG) product, and the National Oceanographic and Atmospheric Administration Climate Prediction Center (NOAA-CPC) Merged Analysis (CMAP). Rain gauge data were first gridded and then compared with monthly and seasonal precipitation totals as well as with long-term averages of the six satellite products at different spatial resolutions (2.5°, 1°, and 0.5°). The results demonstrated the excellent performance of the 3B43 product over Greece in all three spatial scales. 3B42 from the first and second group and CMAP from the third exhibited a reasonable skill.  相似文献   

20.
The seasonal variation of lightning flash activity over the Indian subcontinent (0°N–35°N and 60°E–100°E) is studied using the quality checked monthly lightning flash data obtained from lightning imaging sensor on board the Tropical Rainfall Measuring Mission satellite. This paper presents results of spatio-temporal variability of lightning activity over the Indian subcontinent. The study of seasonal total lightning flashes indicates that the lightning flash density values are in qualitative agreement with the convective activity observed over this region. Maximum seasonal total flash counts are observed during the monsoon season. The propagation of the inter-tropical convergence zone over this region is also confirmed. Synoptic conditions responsible for variation of lightning activity are also investigated with the help of an observed dataset. The mean monthly flash counts show a peak in the month of May, which is the month of maximum temperatures over this region. Maximum flash density (40.2 km?2 season?1) is observed during the pre-monsoon season at 25.2°N/91.6°E and the annual maximum flash density of 28.2 km?2 year?1 is observed at 33.2°N/74.6°E. The study of the inter-annual variability of flash counts exhibits bimodal nature with the first maximum in April/May and second maximum in August/September.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号