首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   475篇
  免费   26篇
  国内免费   4篇
测绘学   23篇
大气科学   49篇
地球物理   102篇
地质学   165篇
海洋学   56篇
天文学   50篇
综合类   2篇
自然地理   58篇
  2022年   5篇
  2021年   9篇
  2020年   16篇
  2019年   8篇
  2018年   15篇
  2017年   19篇
  2016年   18篇
  2015年   15篇
  2014年   17篇
  2013年   24篇
  2012年   21篇
  2011年   20篇
  2010年   22篇
  2009年   17篇
  2008年   25篇
  2007年   10篇
  2006年   21篇
  2005年   22篇
  2004年   16篇
  2003年   12篇
  2002年   16篇
  2001年   13篇
  2000年   7篇
  1999年   9篇
  1998年   11篇
  1997年   3篇
  1996年   4篇
  1995年   5篇
  1993年   9篇
  1991年   4篇
  1990年   3篇
  1989年   4篇
  1987年   5篇
  1986年   6篇
  1985年   5篇
  1984年   5篇
  1982年   2篇
  1981年   4篇
  1980年   2篇
  1979年   7篇
  1978年   6篇
  1977年   3篇
  1976年   7篇
  1975年   7篇
  1974年   2篇
  1973年   3篇
  1968年   2篇
  1967年   3篇
  1966年   2篇
  1940年   2篇
排序方式: 共有505条查询结果,搜索用时 269 毫秒
81.
Six tourmaline samples were investigated as potential reference materials (RMs) for boron isotope measurement by secondary ion mass spectrometry (SIMS). The tourmaline samples are chemically homogeneous and cover a compositional range of tourmaline supergroup minerals (primarily Fe, Mg and Li end‐members). Additionally, they have homogeneous boron delta values with intermediate precision values during SIMS analyses of less than 0.6‰ (2s). These samples were compared with four established tourmaline RMs, that is, schorl IAEA‐B‐4 and three Harvard tourmalines (schorl HS#112566, dravite HS#108796 and elbaite HS#98144). They were re‐evaluated for their major element and boron delta values using the same measurement procedure as the new tourmaline samples investigated. A discrepancy of about 1.5‰ in δ11B was found between the previously published reference values for established RMs and the values determined in this study. Significant instrumental mass fractionation (IMF) of up to 8‰ in δ11B was observed for schorl–dravite–elbaite solid solutions during SIMS analysis. Using the new reference values determined in this study, the IMF of the ten tourmaline samples can be modelled by a linear combination of the chemical parameters FeO + MnO, SiO2 and F. The new tourmaline RMs, together with the four established RMs, extend the boron isotope analysis of tourmaline towards the Mg‐ and Al‐rich compositional range. Consequently, the in situ boron isotope ratio of many natural tourmalines can now be determined with an uncertainty of less than 0.8‰ (2s).  相似文献   
82.
Accurate ion microprobe analysis of oxygen isotope ratios in garnet requires appropriate reference materials to correct for instrumental mass fractionation that partly depends on the garnet chemistry (matrix effect). The matrix effect correlated with grossular, spessartine and andradite components was characterised for the Cameca IMS 1280HR at the SwissSIMS laboratory based on sixteen reference garnet samples. The correlations fit a second‐degree polynomial with maximum bias of ca. 4‰, 2‰ and 8‰, respectively. While the grossular composition range 0–25% is adequately covered by available reference materials, there is a paucity of them for intermediate compositions. We characterise three new garnet reference materials GRS2, GRS‐JH2 and CAP02 with a grossular content of 88.3 ± 1.2% (2s), 83.3 ± 0.8% and 32.5 ± 3.0%, respectively. Their micro scale homogeneity in oxygen isotope composition was evaluated by multiple SIMS sessions. The reference δ18O value was determined by CO2 laser fluorination (δ18OLF). GRS2 has δ18OLF = 8.01 ± 0.10‰ (2s) and repeatability within each SIMS session of 0.30–0.60‰ (2s), GRS‐JH2 has δ18OLF = 18.70 ± 0.08‰ and repeatability of 0.24–0.42‰ and CAP02 has δ18OLF = 4.64 ± 0.16‰ and repeatability of 0.40–0.46‰.  相似文献   
83.
As mineral exploration seeks deeper targets, there will be a greater reliance on geophysical data and a better understanding of the geological meaning of the responses will be required, and this must be achieved with less geological control from drilling. Also, exploring based on the mineral system concept requires particular understanding of geophysical responses associated with altered rocks. Where petrophysical datasets of adequate sample size and measurement quality are available, physical properties show complex variations, reflecting the combined effects of various geological processes. Large datasets, analysed as populations, are required to understand the variations. We recommend the display of petrophysical data as frequency histograms because the nature of the data distribution is easily seen with this form of display. A petrophysical dataset commonly contains a combination of overlapping sub-populations, influenced by different geological factors. To understand the geological controls on physical properties in hard rock environments, it is necessary to analyse the petrophysical data not only in terms of the properties of different rock types. It is also necessary to consider the effects of processes such as alteration, weathering, metamorphism and strain, and variables such as porosity and stratigraphy. To address this complexity requires that much more supporting geological information be acquired than in current practice. The widespread availability of field portable instruments means quantitative geochemical and mineralogical data can now be readily acquired, making it unnecessary to rely primarily on categorical rock classification schemes. The petrophysical data can be combined with geochemical, petrological and mineralogical data to derive explanations for observed physical property variations based not only on rigorous rock classification methods, but also in combination with quantitative estimates of alteration and weathering. To understand how geological processes will affect different physical properties, it is useful to define three end-member forms of behaviour. Bulk behaviour depends on the physical properties of the dominant mineral components. Density and, to a lesser extent, seismic velocity show such behaviour. Grain and texture behaviour occur when minor components of the rock are the dominate controls on its physical properties. Grain size and shape control grain properties, and for texture properties the relative positions of these grains are also important. Magnetic and electrical properties behave in this fashion. Thinking in terms of how geological processes change the key characteristics of the major and minor mineralogical components allows the resulting changes in physical properties to be understood and anticipated.  相似文献   
84.
The study of the critical zones(CZs) of the Earth link the composition and function of aboveground vegetation with the characteristics of the rock layers, providing a new way to study how the unique rock and soil conditions in karst regions affect the aboveground vegetation. Based on survey results of the rocks, soils and vegetation in the dolomite and limestone distribution areas in the karst area of central Guizhou, it was found that woody plant cover increases linearly with the number of cracks with a width of more than 1 mm, while the cover of herbaceous plants shows the opposite trend(p0.01). The dolomite distribution area is characterized by undeveloped crevices, and the thickness of the soil layer is generally less than 20 cm, which is suitable for the distribution of herbaceous plants with shallow roots. Due to the development of crevices in the limestone distribution area, the soil is deeply distributed through the crevices for the deep roots of trees, which leads to a diversified species composition and a complicated structure in the aboveground vegetation. Based on moderate resolution imaging spectroradiometer(MODIS) remote sensing data from 2001 to 2010, the normalized differentiated vegetation index(NDVI) and annual net primary productivity(NPP) results for each phase of a 16-day interval further indicate that the NDVI of the limestone distribution area is significantly higher than that in the dolomite distribution area, but the average annual NPP is the opposite. The results of this paper indicate that in karst CZs, the lithology determines the structure and distribution of the soil, which further determines the cover of woody and herbaceous plants in the aboveground vegetation. Although the amount of soil in the limestone area may be less than that in the dolomite area, the developed crevice structure is more suitable for the growth of trees with deep roots, and the vegetation activity is strong. At present, the treatment of rocky desertification in karst regions needs to fully consider the rock-soilvegetation-air interactions in karst CZs and propose vegetation restoration measures suitable for different lithologies.  相似文献   
85.
Five new biotite reference materials were calibrated at the SwissSIMS laboratory (University of Lausanne) for oxygen isotope determination by secondary ion mass spectrometry (SIMS) and are available to the scientific community. The oxygen isotope composition of the biotites, UNIL_B1 to B5, was determined by laser‐heating fluorination to be 11.4 ± 0.11‰, 8.6 ± 0.15‰, 6.1 ± 0.04‰, 7.1 ± 0.05‰ and 7.6 ± 0.04‰, respectively. SIMS analyses on spots smaller than 20 μm gave a measurement repeatability of 0.3‰ (2 standard deviation, 2s). The matrix effect due to solid solution in natural biotite could be expressed as a linear function of XMg and XF for biotite. No effect was found for different crystallographic orientations. SIMS analysis allows the oxygen isotope composition of biotite to be measured with a measurement uncertainty of 0.3–0.4‰ (2s) for biotites with similar major element compositions. A measurement uncertainty of 0.5‰ (2s) is realistic when F poor biotites (lower than 0.2% m/m oxides) within the compositional range of XMg of 0.3–0.9 were compared from different sessions. The linear correlation with F content offers a reasonable working curve for F‐rich biotites, but additional reference materials are needed to confirm the model.  相似文献   
86.
Since cuspate coastlines are especially sensitive to changes in wave climate, they serve as potential indicators of initial responses to changing wave conditions. Previous work demonstrates that Cape Hatteras and Cape Lookout, North Carolina, which are largely unaffected by shoreline stabilization efforts, have become increasingly asymmetric over the past 30 years, consistent with model predictions for coastline response to increases in Atlantic Ocean summer wave heights and resulting changes in the distribution of wave‐approach angles. Historic and recent shoreline change observations for Cape Fear, North Carolina, and model simulations of coastline response to an increasingly asymmetric wave climate in the presence of beach nourishment, produce comparable differences in shoreline change rates in response to changes in wave climate. Results suggest that the effect of beach nourishment is to compensate for – and therefore to mask – natural responses to wave climate change that might otherwise be discernible in patterns of shoreline change alone. Therefore, this case study suggests that the effects of wave climate change on human‐modified coastlines may be detectable in the spatial and temporal patterns of shoreline stabilization activities. Similar analyses of cuspate features in areas where the change in wave climate is less pronounced (i.e. Fishing Point, Maryland/Virginia) and where local geology appears to exert control on coastline shape (i.e. Cape Canaveral, Florida), suggest that changes in shoreline configuration that may be arising from shifting wave climate are currently limited to sandy wave‐dominated coastlines where the change in wave climate has been most pronounced. However, if hurricane‐generated wave heights continue to increase, large‐scale shifts in patterns of erosion and accretion will likely extend beyond sensitive cuspate features as the larger‐scale coastline shape comes into equilibrium with changing wave conditions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
87.
A workflow for simultaneous joint PP‐PS prestack inversion of data from the Schiehallion field on the United Kingdom Continental Shelf is presented and discussed. The main challenge, describing reasonable PS to PP data registration before any prestack or joint PP‐PS inversion, was overcome thanks to a two‐stage process addressing the signal envelope, then working directly on the seismic data to estimate appropriate time‐variant time‐shift volumes. We evaluated the benefits of including PS along with PP prestack seismic data in a joint inversion process to improve the estimated elastic property quality and also to enable estimation of density compared with other prestack and post‐stack inversion approaches. While the estimated acoustic impedance exhibited a similar quality independent of the inversion used (PP post‐stack, PP prestack or joint PP‐PS prestack inversion) the shear impedance estimation was noticeably improved by the joint PP‐PS prestack inversion when compared to the PP prestack inversion. Finally, the density estimated from joint PP and PS prestack data demonstrated an overall good quality, even where not well‐controlled. The main outcome of this study was that despite several data‐related limitations, inverting jointly correctly processed PP and PS data sets brought extra value for reservoir delineation as opposed to PP‐only or post‐stack inversion.  相似文献   
88.
The Chesapeake Bay is greatly impacted by numerous pollutants including heavy metals and understanding the controls on the distribution of heavy metals in the watershed is critical to mitigation and remediation efforts in controlling this type of pollution. Clasts from a stormwater catchment basin draining a subdivision near George Mason University, Fairfax VA (38°50.090°N 78°19.204°W) were investigated using X-ray diffraction (XRD), Scanning electron microcopy (SEM) and energy dispersive spectroscopy (EDS) to determine the nature of Mn-oxide coatings and relationship to bound heavy metals. Mn-oxides are poorly crystalline and occur as subhedral to anhedral platy particles and more rarely as euhedral plates. Micronodules are a commonly observed texture. Chemical compositions of coatings are variable with average major constituent concentrations being Mn (33.38 wt%), Fe (11.88 wt%), Si (7.33 wt%), Al (5.03 wt%), and Ba (0.90 wt%). Heavy metals are found in the coatings with Zn being most prevalent, occurring in approximately 58% of analyses with an average concentration of (0.66 wt%). Minor amounts of Co, Ni, Pb, and Cl are observed. Heavy metals and Cl are interpreted as being derived from road pollution. Mn-oxides can serve as a sequestration mechanism for pollution but may also release heavy metals. Field and laboratory observations indicate Mn-oxides occurring on the surface of the clasts can be mechanically mobilized. This is a mechanism for transporting heavy metals into the Chesapeake Bay watershed. Deicing agents may serve as a mechanism to release heavy metals through cation exchange and increased ionic strength. This is the first detailed mineralogical investigation of Mn-oxides and the roles they may play in pollution in the Chesapeake Bay.  相似文献   
89.
90.
An established numerical tidal model has been used to investigate the impact of various sea-level rise (SLR) scenarios, as well as SLR in combination with large-scale tidal power plants on European shelf tidal dynamics. Even moderate and realistic levels of future SLR are shown to have significant impacts on the tidal dynamics of the area. These changes are further enhanced when SLR and tidal power plants are considered in combination, resulting in changes to tidal amplitudes, currents and associated tidal dissipation and bed shear stresses. Sea-level rise is the dominant influence on any far-field impacts, whereas tidal power plants are shown to have the prevailing influence over any changes close to the point of energy extraction. The spatial extent of the impacts of energy extraction is shown to be affected by the sea level when more than one tidal power plant in the Irish Sea was considered. Different ways to implement SLR in the model are also discussed and shown to be of great significance for the response of the tides.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号