首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   210篇
  免费   19篇
  国内免费   3篇
测绘学   3篇
大气科学   33篇
地球物理   40篇
地质学   84篇
海洋学   39篇
天文学   19篇
综合类   2篇
自然地理   12篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   11篇
  2019年   6篇
  2018年   10篇
  2017年   14篇
  2016年   9篇
  2015年   9篇
  2014年   13篇
  2013年   15篇
  2012年   16篇
  2011年   13篇
  2010年   17篇
  2009年   9篇
  2008年   16篇
  2007年   4篇
  2006年   7篇
  2005年   7篇
  2004年   8篇
  2003年   4篇
  2002年   5篇
  2001年   1篇
  2000年   3篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
  1979年   2篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   3篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
  1969年   4篇
排序方式: 共有232条查询结果,搜索用时 31 毫秒
181.
In this study, we examined the impact of temperature on the carbon and nitrogen trophic transfers from a macroalga to a macro‐grazer by the use of dual 13C‐ and 15N‐labeling. Using an experimental approach in mesocosms, individuals of the urchin Psammechinus miliaris were maintained for 1 month at 17°C (mean summer temperature in the Bay of Brest) and at 20°C (maximum summer temperature) and fed with 13C‐ and 15N‐labeled Solieria chordalis. The results showed that the urchins’ 13C uptake was 0.30 µg13C g dry weight (DW)?1 at 17°C and 0.14 µg13C g DW?1 at 20°C at the end of the experiment. The lower uptake at the higher temperature may be attributed to a decrease in metabolic activity at 20°C, involving lower feeding and/or respiration rates. Conversely, no significant effect of temperature was detected on 15N uptake. At the end of the experiment, the urchins’ 15N uptake was 0.04 µg15N g DW?1 at 17°C and 0.03 µg15N g DW?1 at 20°C. This suggests that temperature may affect carbon and nitrogen trophic fluxes differently. The use of dual isotope labeling offers interesting prospects and needs to be further extended in order to better understand trophic interactions in marine communities and the consequences of current environmental changes, such as global warming.  相似文献   
182.
Ocean acidification and warming are likely to affect the structure and functioning of marine benthic communities. This study experimentally examined the effects of ocean acidification and warming on trophic interactions within a maerl bed community by using stable carbon and nitrogen isotope analysis. Two three-month experiments were conducted in winter and summer seasons with four different combinations of pCO2 (ambient and elevated pCO2) and temperature (ambient and +3°C). Experimental assemblages were created in tanks held in the laboratory and were composed of calcareous (Lithothamnion corallioides) and fleshy algae (Rhodymenia ardissonei, Solieria chordalis, and Ulva sp.), gastropods (Gibbula magus and Jujubinus exasperatus), and sea urchins (Psammechinus miliaris). Our results showed higher seaweed availability for grazers in summer than winter. Therefore, grazers were able to adapt their diet seasonally. Increased pCO2 and temperature did not modify the trophic structure in winter, while shifts in the contribution of seaweed were found in summer. Combined acidification and warming increased the contribution of biofilm in gastropods diet in summer conditions. Psammechinus miliaris mostly consumed L. corallioides under ambient conditions, while the alga S. chordalis became the dominant food source under high pCO2 in summer. Predicted changes in pCO2 and temperature had complex effects on assemblage trophic structure. Direct effects of acidification and warming on seaweed metabolism may modify their abundance and biomass, affecting their availability for grazers. Climate change may also modify seaweeds' nutritive value and their palatability for grazers. The grazers we investigated were able to change their diet in response to changes in algal assemblages, an advantage given that warming and acidification alter the composition of algal communities.  相似文献   
183.
Variability and predictability of Antarctic krill swarm structure   总被引:6,自引:0,他引:6  
Swarming is a fundamental part of the life of Euphausia superba, yet we still know very little about what drives the considerable variability in swarm shape, size and biomass. We examined swarms across the Scotia Sea in January and February 2003 using a Simrad EK60 (38 and 120 kHz) echosounder, concurrent with net sampling. The acoustic data were analysed through applying a swarm-identification algorithm and then filtering out all non-krill targets. The area, length, height, depth, packing-concentration and inter-swarm distance of 4525 swarms was derived by this method. Hierarchical clustering revealed 2 principal swarm types, which differed in both their dimensions and packing-concentrations. Type 1 swarms were generally small (<50 m long) and were not very tightly packed (<10 ind. m−3), whereas type 2 swarms were an order of magnitude larger and had packing concentrations up to 10 times greater. Further sub-divisions of these types identified small and standard swarms within the type 1 group and large and superswarms within the type 2 group. A minor group (swarm type 3) was also found, containing swarms that were isolated (>100 km away from the next swarm). The distribution of swarm types over the survey grid was examined with respect to a number of potential explanatory variables describing both the environment and the internal-state of krill (namely maturity, body length, body condition). Most variables were spatially averaged over scales of 100 km and so mainly had a mesoscale perspective. The exception was the level of light (photosynthetically active radiation (PAR)) for which measurements were specific to each swarm. A binary logistic model was constructed from four variables found to have significant explanatory power (P<0.05): surface fluorescence, PAR, krill maturity and krill body length. Larger (type 2) swarms were more commonly found during nighttime or when it was overcast during the day, when surface fluorescence was low, and when the krill were small and immature. A strong pattern of diel vertical migration was not observed although the larger and denser swarms tended to occur more often at night than during the day. The vast majority of krill were contained within a minor fraction of the total number of swarms. These krill-rich swarms were more common in areas dominated by small and immature krill. We propose that, at the mesoscale level, the structure of swarms switches from being predominantly large and tightly packed to smaller and more diffuse as krill grow and mature. This pattern is further modulated according to feeding conditions and then level of light.  相似文献   
184.
The Barents Sea ecosystem, one of the most productive and commercially important ecosystems in the world, has experienced major fluctuations in species abundance the past five decades. Likely causes are natural variability, climate change, overfishing and predator–prey interactions. In this study, we use an age-length structured multi-species model (Gadget, Globally applicable Area-Disaggregated General Ecosystem Toolbox) to analyse the historic population dynamics of major fish and marine mammal species in the Barents Sea. The model was used to examine possible effects of a number of plausible biological and fisheries scenarios. The results suggest that changes in cod mortality from fishing or cod cannibalism levels have the largest effect on the ecosystem, while changes to the capelin fishery have had only minor effects. Alternate whale migration scenarios had only a moderate impact on the modelled ecosystem. Indirect effects are seen to be important, with cod fishing pressure, cod cannibalism and whale predation on cod having an indirect impact on capelin, emphasising the importance of multi-species modelling in understanding and managing ecosystems. Models such as the one presented here provide one step towards an ecosystem-based approach to fisheries management.  相似文献   
185.
186.
Interactions between lakes and groundwater are of increasing concern for freshwater environmental management but are often poorly characterized. Groundwater inflow to lakes, even at low rates, has proven to be a key in both lake nutrient balances and in determining lake vulnerability to pollution. Although difficult to measure using standard hydrometric methods, significant insight into groundwater–lake interactions has been acquired by studies applying geochemical tracers. However, the use of simple steady‐state, well‐mixed models, and the lack of characterization of lake spatiotemporal variability remain important sources of uncertainty, preventing the characterization of the entire lake hydrological cycle, particularly during ice‐covered periods. In this study, a small groundwater‐connected lake was monitored to determine the annual dynamics of the natural tracers, water stable isotopes and radon‐222, through the implementation of a comprehensive sampling strategy. A multilayer mass balance model was found outperform a well‐mixed, one‐layer model in terms of quantifying groundwater fluxes and their temporal evolution, as well as characterizing vertical differences. Water stable isotopes and radon‐222 were found to provide complementary information on the lake water budget. Radon‐222 has a short response time, and highlights rapid and transient increases in groundwater inflow, but requires a thorough characterization of groundwater radon‐222 activity. Water stable isotopes follow the hydrological cycle of the lake closely and highlight periods when the lake budget is dominated by evaporation versus groundwater inflow, but continuous monitoring of local meteorological parameters is required. Careful compilation of tracer evolution throughout the water column and over the entire year is also very informative. The developed models, which are suitable for detailed, site‐specific studies, allow the quantification of groundwater inflow and internal dynamics during both ice‐free and ice‐covered periods, providing an improved tool for understanding the annual water cycle of lakes.  相似文献   
187.
This article answers calls from scholars to attend to a research gap concerning the visual representation of climate change. We present results from three Q-methodology workshops held in Melbourne (Australia), Norwich (UK) and Boulder (USA) investigating engagement with climate change imagery drawn from mass media sources. Participants were provided with a concourse of climate change images drawn from a newspaper content analysis carried out across all three countries, and asked to carry out two Q-sorts: first, for salience (‘this image makes me feel climate change is important’) and second, for efficacy (‘this image makes me feel I can do something about climate change’). We found results remarkably consistent both across and within country cohorts. This may indicate the presence of a dominant, mainstream discourse around climate imagery. We found that imagery of climate impacts promotes feelings of salience, but undermines self-efficacy; that imagery of energy futures imagery promotes self-efficacy; and that images of politicians and celebrities strongly undermine saliency, and undermine self-efficacy for the Australian cohort. These results, if widely replicable, have implications for climate change communication and engagement. Our results suggest that imagery plays a role in either increasing the sense of importance of the issue of climate change (saliency), or in promoting feelings of being able to do something about climate change (efficacy) – but few, if any, images seem to do both. Communications strategies should assess the purpose of their messages, considering these findings regarding salience and efficacy in this study, and choose to employ images accordingly.  相似文献   
188.
189.
GOCE gravitational gradients along the orbit   总被引:6,自引:3,他引:3  
GOCE is ESA’s gravity field mission and the first satellite ever that measures gravitational gradients in space, that is, the second spatial derivatives of the Earth’s gravitational potential. The goal is to determine the Earth’s mean gravitational field with unprecedented accuracy at spatial resolutions down to 100 km. GOCE carries a gravity gradiometer that allows deriving the gravitational gradients with very high precision to achieve this goal. There are two types of GOCE Level 2 gravitational gradients (GGs) along the orbit: the gravitational gradients in the gradiometer reference frame (GRF) and the gravitational gradients in the local north oriented frame (LNOF) derived from the GGs in the GRF by point-wise rotation. Because the V XX , V YY , V ZZ and V XZ are much more accurate than V XY and V YZ , and because the error of the accurate GGs increases for low frequencies, the rotation requires that part of the measured GG signal is replaced by model signal. However, the actual quality of the gradients in GRF and LNOF needs to be assessed. We analysed the outliers in the GGs, validated the GGs in the GRF using independent gravity field information and compared their assessed error with the requirements. In addition, we compared the GGs in the LNOF with state-of-the-art global gravity field models and determined the model contribution to the rotated GGs. We found that the percentage of detected outliers is below 0.1% for all GGs, and external gravity data confirm that the GG scale factors do not differ from one down to the 10−3 level. Furthermore, we found that the error of V XX and V YY is approximately at the level of the requirement on the gravitational gradient trace, whereas the V ZZ error is a factor of 2–3 above the requirement for higher frequencies. We show that the model contribution in the rotated GGs is 2–35% dependent on the gravitational gradient. Finally, we found that GOCE gravitational gradients and gradients derived from EIGEN-5C and EGM2008 are consistent over the oceans, but that over the continents the consistency may be less, especially in areas with poor terrestrial gravity data. All in all, our analyses show that the quality of the GOCE gravitational gradients is good and that with this type of data valuable new gravity field information is obtained.  相似文献   
190.
We develop a technique allowing 3D gridding of large sets of 1D resistivity models obtained after inversion of extensive airborne EM surveys. The method is based on the assumption of a layered-earth model. 2D kriging is used for interpolation of geophysical model parameters and their corresponding uncertainties. The 3D grid is created from the interpolated data, its structure accurately follows the geophysical model, providing a lightweight file for a good rendering. Propagation of errors is tracked through the quantification of uncertainties from both inversion and interpolation procedures. The 3D grid is exported to a portable standard, which allows flexible visualization and volumetric computations, and improves interpretation. The method is validated and illustrated by a case-study on Santa Cruz Island, in the Galapagos Archipelago.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号