首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   98篇
  国内免费   6篇
大气科学   109篇
自然地理   3篇
  2024年   17篇
  2023年   31篇
  2022年   32篇
  2021年   25篇
  2020年   6篇
  2019年   1篇
排序方式: 共有112条查询结果,搜索用时 187 毫秒
1.
利用陕西省2016年97站逐日5cm土壤温度观测数据,结合相关系数、平均偏差和均方根误差等统计参数,评估了中国气象局陆面数据同化系统CLDAS2.0和美国全球陆面数据同化系统不同陆面模式(Noah-GLDAS2.1,Noah-GLDAS1,CLM-GLDAS1)土壤温度数据在陕西省的适用性。结果表明:(1)CLDAS2.0在陕西省的相关系数最高,均方根误差最小,Noah-GLDAS2.1次之,Noah-GLDAS1最差。(2)从陕西省3个区域的时间演变序列的分析可以看到,CLDAS2.0和Noah-GLDAS2.1能很好模拟出土壤温度的季节变化以及日变化,Noah-GLDAS1、CLMGLDAS1对于日变化的模拟较差,且前两者偏差也明显小于后两者。(3)Noah-GLDAS2.1在陕北与关中地区土壤温度模拟能力与CLDAS2.0相差无几,但在陕南地区CLDAS2.0要好于Noah-GLDAS2.1。总体来看,CLDAS2.0对陕西省土壤温度模拟能力最好,在陕西省有着更好的适用性。  相似文献   
2.
利用陕西省94个国家气象站1961—2018年逐日气象资料,根据干旱灾害气候背景和社会经济环境,结合灾害风险评估相关理论方法,选取致灾因子危险性、孕灾环境脆弱性、承灾体暴露度、防灾减灾能力4个方面指标,建立干旱灾害风险评估指数,基于GIS平台,对陕西省不同季节进行干旱灾害风险区划。结果表明:(1)陕西各区域干旱致灾因子危险性季节差异明显,陕北北部除夏季外各季节干旱危险性较高,关中地区易发生伏旱。陕南的汉中各季节干旱危险性均较大,安康东部和商洛各季节干旱危险性则较小。(2)春季、夏季和秋季,陕南的汉中平原及安康的汉江河谷地带,关中的西安和渭南地区,陕北北部榆林地区为干旱孕灾环境高脆弱性区或较高区;冬季陕南大部、秦岭地区的高脆弱性区较其他三季范围有所减小;海拔较高的秦岭山地,关中平原和陕北北部各季节皆为低脆弱性或较低脆弱性地区。(3)承灾体暴露度的高风险区主要分布于关中地区。(4)全省抵御干旱风险能力最高地区为陕北黄河沿线、关中各地的城镇地区。(5)干旱灾害综合风险的高风险区主要在陕南巴山地区、秦岭南北两侧、陕北南部,陕南汉江平原、关中平原及陕北延安、榆林等地为干旱较低、低风险区。  相似文献   
3.
利用陕西气象站点逐小时降水实况、精细化格点预报、数字高程、土地利用、灾情等资料,应用水动力模型FloodArea对暴雨洪涝进行淹没模拟,在淹没水深和范围的基础上叠置承灾体属性,引入承灾体的灾损曲线,建立暴雨洪涝灾害风险预评估模型,并从数量占比和灾情占比两个角度,以县为单元进行验证,利用格点降水量预报对陕西6次大范围暴雨过程灾害风险进行预评估以及效果检验。结果表明:暴雨洪涝气象风险预估结果与实际受灾地区分布基本吻合,正确预报率73.2%,模拟结果可信度高,对于降水区域集中暴雨的风险预评估性能较分散性暴雨较高,漏报率相对低,但是空报率较高;建立的暴雨洪涝灾害风险预评估及效果检验流程,提高了气象服务的针对性,可以用于洪涝风险预评估的实际业务中,对暴雨洪涝风险管理提供技术支撑。  相似文献   
4.
利用秦巴山区44个国家级自动观测站的数据,统计分析1992—2021年秦巴山区暴雨和短时强降水时空特征。结果表明:秦巴山区年平均暴雨日为214 d,近30 a暴雨日呈增加趋势,巴山地区的暴雨日远多于秦岭山区;暴雨集中在6—9月,占全年暴雨日的879%,上半年的暴雨以局地暴雨为主,下半年区域性暴雨比例则明显增加,7月局地暴雨和区域性暴雨均为全年最多。秦巴山区暴雨日与年平均降水量自北向南有增加趋势,而暴雨贡献率自北向南则有减小趋势;年平均降水量南多北少,暴雨平均降水量西多东少。秦巴山区年平均短时强降水频次为58 h,自北向南有增加趋势,其中秦岭山区自西向东短时强降水的强度呈增加趋势,尤其在秦岭东北部多站的雨强大于70 mm/h。秦巴山区短时强降水呈明显的“夜雨”特征,午后为次高峰。  相似文献   
5.
关中平原至陕北黄土高原海拔渐次升高,大气污染物分布、排放源和下垫面特征均有较大变化。利用陕西省由南至北西安、延安、榆林三市环境空气质量监测数据和气象观测数据及NCEP再分析产品,对2018年春末夏初(5月下旬至6月初)连续两次臭氧(O3)污染过程开展研究。结果表明:三市O3质量浓度(用C(O3)表示)皆呈昼高夜低的日变化特征;三市日均C(O3)表现出随海拔高度升高而增加的现象,即榆林最高,延安次之,西安最低,较高海拔的黄土高原高背景O3可能是榆林、延安C(O3)较高的重要原因。两次O3污染发生在大气环流由春季型向夏季型过渡阶段,陕西处于500 hPa暖性高脊、850 hPa偏南风主导、地面静稳晴热的天气形势下,有利于光化学O3生成以及大气低层O3区域输送,其中西安的光化学生成对其日间C(O3)升高作用最明显。三市温度和C(O3)呈正相关,相同温度下...  相似文献   
6.
利用1981—2020年欧洲中心高分辨率ERA5再分析资料及站点实测降水资料,通过中国气象局人工影响天气中心发布的云水资源监测评估方法,对陕西云水资源进行了评估。结果表明:陕西年均水汽总量28 6702×108 t,水凝物总量1 9384×108 t,降水总量1 3907×108 t,云水资源总量5477×108 t,“南多北少”的纬向分布特征明显;近40 a陕西全域云水资源呈下降趋势,含量丰沛的南部地区下降最为明显;液态水凝物主要位于低层850~600 hPa,固态水凝物主要位于中层650~350 hPa,根据水凝物垂直分布,春、秋两季人工影响天气的适宜催化高度约为3~5 km,冬季2~4 km,夏季4~8 km;陕西西、南边界水汽和水凝物净流入,东、北边界净流出,区域整体净收支为正,多年气候倾向率为负,呈下降趋势。  相似文献   
7.
利用X波段全固态多普勒雨量雷达资料和相应的6个地面气象观测站的观测资料,对西安2021年9月和10月两次持续降水过程的降水数据进行对比分析,评估雨量雷达反演降水的准确性。结果表明:从两次降水过程整体变化趋势分析,雨量雷达估测的降水量能较好地表现出实际降水量的变化趋势;雨量雷达反演的降水量小时数据与地面观测小时降水数据的相关性为0852;当小时降水量达到20 mm以上时,雨量雷达数据准确性较高。  相似文献   
8.
利用2014年6—10月夏玉米全生育期试验数据和气象数据,采用LG型称重式蒸渗仪分析了在充分供水条件下陕西关中地区夏玉米全生育期最大耗水量及不同生育期的作物系数。结果表明:夏玉米在试验地段从播种到收获共119 d,充分供水条件下夏玉米全生育期最大耗水量599.9 mm。玉米实际蒸发蒸腾量(ET)与参考蒸散量(ET0)的逐日变化趋势倾向率除三叶—七叶期以外,其余时间段呈现出一致性;全生育期日平均ET为5.0 mm/d,抽雄—乳熟期的ET最大,占全生育期的33.2%。夏播玉米各生育期(播种—三叶、三叶—七叶、七叶—拔节、拔节—抽雄、抽雄—乳熟、乳熟—收获)作物系数分别为0.64,0.76,0.80,1.38,1.47,1.58。  相似文献   
9.
利用逐5 min地面观测资料、探空资料、风云四号卫星云图以及NCEP 1°×1°再分析资料,分析2020年2月1—2日出现在榆林市的一次浓雾天气成因及维持机制。结果表明:此次浓雾属于辐射雾,发生在500 hPa为较平直纬向气流,700 hPa和850 hPa盛行弱偏北风,地面处于均压场中的大尺度环流背景下。大雾出现前雾区有降雪,降雪后空气湿度达到饱和,地面维持3 m/s以下弱偏北风,夜间辐射降温,气温下降至露点温度,饱和水汽凝结成小水珠,大雾得以形成和发展;雾区上空850 hPa上逆温层稳定存在,影响动量的垂直交换,使得水汽在近地层长时间集聚,是浓雾得以维持12 h的主要原因;日出后地面气温回升,近地面动量下传和冷空气入侵,垂直扩散增强,浓雾得以快速消散。分析浓雾期间动力和水汽条件发现,大雾出现前,水汽在雾区上空辐合,为大雾的形成提供了水汽基础;大雾维持阶段,雾区上空层结稳定,近地面有逆温层存在;大雾消散阶段,逆温层被破坏,低层转为辐散气流,浓雾快速消散。  相似文献   
10.
针对卫星遥感数据提取或生成地表温度(land surface temperature, LST)存在的时空分辨率矛盾,利用哨兵2/3卫星产品数据,其中哨兵3数据提供高时间分辨率影像,哨兵2数据提供高空间分辨率信息,并利用SNAP70及Excel2010软件,建立归一化植被指数与LST的相关关系,利用统计降尺度方法,成功将LST的空间尺度从1 000 m降至10 m,生成高时间分辨率10 m空间分辨率的LST。将原始1 000 m分辨率哨兵3地表温度图与降尺度到10 m空间分辨率的地表温度图对比,可以发现:降尺度地表温度图可以覆盖大部分原始1 000 m分辨率的地表温度信息,说明降尺度结果较好地保留了原始LST影像热特征的分布情况;而且,所生成的高空间分辨率的地表温度产品地物特征清晰,纹理明显。利用地面国家气象自动观测站实测0 cm地温数据验证降尺度结果,可以看出:误差平均值为26 K,误差值较小,说明降尺度结果精度较高。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号