首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   174篇
  免费   6篇
  国内免费   12篇
测绘学   1篇
大气科学   151篇
地球物理   13篇
地质学   5篇
海洋学   17篇
天文学   2篇
综合类   1篇
自然地理   2篇
  2024年   2篇
  2023年   1篇
  2022年   6篇
  2021年   4篇
  2020年   3篇
  2019年   3篇
  2018年   1篇
  2017年   5篇
  2016年   1篇
  2015年   5篇
  2014年   6篇
  2013年   10篇
  2012年   3篇
  2011年   5篇
  2010年   3篇
  2009年   9篇
  2008年   3篇
  2007年   8篇
  2006年   16篇
  2005年   15篇
  2004年   10篇
  2003年   11篇
  2002年   7篇
  2001年   12篇
  2000年   10篇
  1999年   9篇
  1998年   4篇
  1997年   8篇
  1996年   7篇
  1995年   1篇
  1993年   2篇
  1991年   1篇
  1986年   1篇
排序方式: 共有192条查询结果,搜索用时 15 毫秒
11.
12.
 We assess two parametrisations of sea-ice in a coupled atmosphere–mixed layer ocean–sea-ice model. One parametrisation represents the thermodynamic properties of sea-ice formation alone (THERM), while the other also includes advection of the ice (DYN). The inclusion of some sea-ice dynamics improves the model's simulation of the present day sea-ice cover when compared to observations. Two climate change scenarios are used to investigate the effect of these different parametrisations on the model's climate sensitivity. The scenarios are the equilibrium response to a doubling of atmospheric CO2 and the response to imposed glacial boundary conditions. DYN produces a smaller temperature response to a doubling of CO2 than THERM. The temperature response of THERM is more similar to DYN in the glacial case than in the 2×CO2 case which implies that the climate sensitivity of THERM and DYN varies with the nature of the forcing. The different responses can largely be explained by the different distribution of Southern Hemisphere sea-ice cover in the control simulations, with the inclusion of ice dynamics playing an important part in producing the differences. This emphasises the importance of realistically simulating the reference climatic state when attempting to simulate a climate change to a prescribed forcing. The simulated glacial sea-ice cover is consistent with the limited palaeodata in both THERM and DYN, but DYN simulates a more realistic present day sea-ice cover. We conclude that the inclusion of simple ice dynamics in our model increases our confidence in the simulation of the anomaly climate. Received: 24 May 2000 / Accepted: 25 October 2000  相似文献   
13.
In the prognostic stratiform cloud scheme used in the UK Meteorological Office Unified Model, mixed phase clouds are assumed to exist between 0 and –15 °C. Recent observations of such clouds, carried out using the C-130 aircraft of the Meteorological Research Flight, suggest that a smaller range of 0 to –9°C may be more appropriate. The sensitivity of cloud and radiation fields as simulated by a 5 × 7.5° latitude-longitude version of the Unified Model to such a reduction in the temperature range of mixed phase clouds is considered. Using a smaller temperature range systematic errors in the radiation budget of the model are reduced in mid-latitudes, bringing the model into closer agreement with ERBE data. The sensitivity of model albedo to an increase in the temperature range over which mixed phase clouds are assumed to exist, suggested by previous observational studies, is also considered together with the impact of removing the mixed phase part of the precipitation parametrization altogether.  相似文献   
14.
Large ensembles of coupled atmosphere–ocean general circulation model (AOGCM) simulations are required to explore modelling uncertainty and make probabilistic predictions of future transient climate change at regional scales. These are not yet computationally feasible so we have developed a technique to emulate the response of such an ensemble by scaling equilibrium patterns of climate change derived from much cheaper “slab” model ensembles in which the atmospheric component of an AOGCM is coupled to a mixed-layer ocean. Climate feedback parameters are diagnosed for each member of a slab model ensemble and used to drive an energy balance model (EBM) to predict the time-dependent response of global surface temperature expected for different combinations of uncertain AOGCM parameters affecting atmospheric, land and sea-ice processes. The EBM projections are then used to scale normalised patterns of change derived for each slab member, and hence emulate the response of the relevant atmospheric model version when coupled to a dynamic ocean, in response to a 1% per annum increase in CO2. The emulated responses are validated by comparison with predictions from a 17 member ensemble of AOGCM simulations, constructed from variants of HadCM3 using the same parameter combinations as 17 members of the slab model ensemble. Cross-validation permits estimation of the spatial and temporal dependence of emulation error, and also allows estimation of a correction field to correct discrepancies between the scaled equilibrium patterns and the transient response, reducing the emulation error. Emulated transient responses and their associated errors are obtained from the slab ensemble for 129 pseudo-HadCM3 versions containing multiple atmospheric parameter perturbations. These are combined to produce regional frequency distributions for the transient response of annual surface temperature change and boreal winter precipitation change. The technique can be extended to any surface climate variable demonstrating a scaleable, approximately linear response to forcing.  相似文献   
15.
Regional climate models (RCMs) are now commonly used to downscale climate change projections provided by global coupled models to resolutions that can be utilised at national and finer scales. Although this extra tier of complexity adds significant value, it inevitably contributes a further source of uncertainty, due to the regional modelling uncertainties involved. Here, an initial attempt is made to estimate the uncertainty that arises from typical variations in RCM formulation, focussing on changes in UK surface air temperature (SAT) and precipitation projected for the late twenty-first century. Data are provided by a relatively large suite of RCM and global model integrations with widely varying formulations. It is found that uncertainty in the formulation of the RCM has a relatively small, but non-negligible, impact on the range of possible outcomes of future UK seasonal mean climate. This uncertainty is largest in the summer season. It is also similar in magnitude to that of large-scale internal variations of the coupled climate system, and for SAT, it is less than the uncertainty due to the emissions scenario, whereas for precipitation it is probably larger. The largest source of uncertainty, for both variables and in all seasons, is the formulation of the global coupled model. The scale-dependency of uncertainty due to RCM formulation is also explored by considering its impact on projections of the difference in climate change between the north and south of the UK. Finally, the implications for the reliability of UK seasonal mean climate change projections are discussed.  相似文献   
16.
Under global warming, the predicted intensification of the global freshwater cycle will modify the net freshwater flux at the ocean surface. Since the freshwater flux maintains ocean salinity structures, changes to the density-driven ocean circulation are likely. A modified ocean circulation could further alter the climate, potentially allowing rapid changes, as seen in the past. The relevant feedback mechanisms and timescales are poorly understood in detail, however, especially at low latitudes where the effects of salinity are relatively subtle. In an attempt to resolve some of these outstanding issues, we present an investigation of the climate response of the low-latitude Pacific region to changes in freshwater forcing. Initiated from the present-day thermohaline structure, a control run of a coupled ocean–atmosphere general circulation model is compared with a perturbation run in which the net freshwater flux is prescribed to be zero over the ocean. Such an extreme experiment helps to elucidate the general adjustment mechanisms and their timescales. The atmospheric greenhouse gas concentrations are held constant, and we restrict our attention to the adjustment of the upper 1,000 m of the Pacific Ocean between 40°N and 40°S, over 100 years. In the perturbation run, changes to the surface buoyancy, near-surface vertical mixing and mixed-layer depth are established within 1 year. Subsequently, relative to the control run, the surface of the low-latitude Pacific Ocean in the perturbation run warms by an average of 0.6°C, and the interior cools by up to 1.1°C, after a few decades. This vertical re-arrangement of the ocean heat content is shown to be achieved by a gradual shutdown of the heat flux due to isopycnal (i.e. along surfaces of constant density) mixing, the vertical component of which is downwards at low latitudes. This heat transfer depends crucially upon the existence of density-compensating temperature and salinity gradients on isopycnal surfaces. The timescale of the thermal changes in the perturbation run is therefore set by the timescale for the decay of isopycnal salinity gradients in response to the eliminated freshwater forcing, which we demonstrate to be around 10–20 years. Such isopycnal heat flux changes may play a role in the response of the low-latitude climate to a future accelerated freshwater cycle. Specifically, the mechanism appears to represent a weak negative sea surface temperature feedback, which we speculate might partially shield from view the anthropogenically-forced global warming signal at low latitudes. Furthermore, since the surface freshwater flux is shown to play a role in determining the ocean’s thermal structure, it follows that evaporation and/or precipitation biases in general circulation models are likely to cause sea surface temperature biases.  相似文献   
17.
We have conducted a multi-model intercomparison of cloud-water in five state-of-the-art AGCMs run for control and doubled carbon dioxide climates. The most notable feature of the differences between the control and doubled carbon dioxide climates is in the distribution of cloud-water in the mixed-phase temperature band. The difference is greatest at mid and high latitudes. We found that the amount of cloud ice in the mixed phase layer in the control climate largely determines how much the cloud-water distribution changes for the doubled carbon dioxide climate. Therefore evaluation of the cloud ice distribution by comparison with data is important for future climate sensitivity studies. Cloud ice and cloud liquid both decrease in the layer below the melting layer, but only cloud liquid increases in the mixed-phase layer. Although the decrease in cloud-water below the melting layer occurs at all latitudes, the increase in cloud liquid in the mixed-phase layer is restricted to those latitudes where there is a large amount of cloud ice in the mixed-phase layer. If the cloud ice in the mixed-phase layer is concentrated at high latitudes, doubling of carbon dioxide might shift the center of cloud water distribution poleward which could decrease solar reflection because solar insolation is less at higher latitude. The magnitude of this poleward shift of cloud water appears to be larger for the higher climate sensitivity models, and it is consistent with the associated changes in cloud albedo forcing. For the control climate there is a clear relationship between the differences in cloud-water and relative humidity between the different models, for both magnitude and distribution. On the other hand the ratio of cloud ice to cloud-water follows the threshold temperature which is determined in each model. Improved measurements of relative humidity could be used to constrain the modeled representation of cloud water. At the same time, comparative analysis in global cloud resolving model simulations is necessary for further understanding of the relationships suggested in this paper.  相似文献   
18.
19.
张庆云  常蕊 《大气科学》2007,31(6):1160-1170
利用1971~2000年逐月SODA (Simple Ocean Data Assimilation) 同化资料(Carton等,2004)、1980~2000年逐月NCEP/NCAR再分析资料(Kalnay等,1996)探讨中部型(暖海水首先出现在120°W以西)和东部型(暖海水首先出现在120°W以东)El Ni?o事件赤道纬向风应力及洋流的异常变化与暖海水信号的传播特征。研究指出:(1)中部型和东部型El Ni?o事件发生时,太平洋上赤道海表最大西风应力距平在西太平洋地区都有显著的东传现象,但中部型El Ni?o事件西风应力距平强度强,造成西太平洋赤道表层的东向流可达东太平洋地区,这类El Ni?o事件强度偏强。(2)中部型El Ni?o事件,赤道表层洋流辐合区及其下沉运动由西太平洋向东太平洋传播,辐合下沉运动抑制了深层冷海水上翻,西太平洋暖水能够传到东太平洋与西太平洋赤道表层洋流辐合区及其下沉运动的东移有关。(3)东部型El Ni?o事件西太平洋赤道表层洋流辐合区及其下沉运动没能直接传到东太平洋地区,东太平洋暖水形成与局地(120°W以东)辐合下沉运动抑制深层冷海水上翻有关;东部型El Ni?o事件暖池次表层的暖水,不是沿着西太平洋赤道次表层向东传播到东太平洋地区,而是由南太平洋西边界流将暖池海水带到40°S左右的西风漂流区, 再由西风漂流平流到东太平洋。  相似文献   
20.
利用1971~2000年逐月SODA(Simple Ocean Data Assimilation)同化资料(Carton等,2004)、1980~2000年逐月NCEP/NCAR再分析资料(Kalnay等,1996)探讨中部型(暖海水首先出现在120°W以西)和东部型(暖海水首先出现在120°W以东)El Nino事件赤道纬向风应力及洋流的异常变化与暖海水信号的传播特征。研究指出:(1)中部型和东部型El Nio事件发生时,太平洋上赤道海表最大西风应力距平在西太平洋地区都有显著的东传现象,但中部型El Nio事件西风应力距平强度强,造成西太平洋赤道表层的东向流可达东太平洋地区,这类El Nio事件强度偏强。(2)中部型El Nio事件,赤道表层洋流辐合区及其下沉运动由西太平洋向东太平洋传播,辐合下沉运动抑制了深层冷海水上翻,西太平洋暖水能够传到东太平洋与西太平洋赤道表层洋流辐合区及其下沉运动的东移有关。(3)东部型El Nio事件西太平洋赤道表层洋流辐合区及其下沉运动没能直接传到东太平洋地区,东太平洋暖水形成与局地(120°W以东)辐合下沉运动抑制深层冷海水上翻有关;东部型El Nio事件暖池次表层的暖水,不是沿着西太平洋赤道次表层向东传播到东太平洋地区,而是由南太平洋西边界流将暖池海水带到40°S左右的西风漂流区,再由西风漂流平流到东太平洋。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号