首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   174篇
  免费   6篇
  国内免费   12篇
测绘学   1篇
大气科学   151篇
地球物理   13篇
地质学   5篇
海洋学   17篇
天文学   2篇
综合类   1篇
自然地理   2篇
  2024年   2篇
  2023年   1篇
  2022年   6篇
  2021年   4篇
  2020年   3篇
  2019年   3篇
  2018年   1篇
  2017年   5篇
  2016年   1篇
  2015年   5篇
  2014年   6篇
  2013年   10篇
  2012年   3篇
  2011年   5篇
  2010年   3篇
  2009年   9篇
  2008年   3篇
  2007年   8篇
  2006年   16篇
  2005年   15篇
  2004年   10篇
  2003年   11篇
  2002年   7篇
  2001年   12篇
  2000年   10篇
  1999年   9篇
  1998年   4篇
  1997年   8篇
  1996年   7篇
  1995年   1篇
  1993年   2篇
  1991年   1篇
  1986年   1篇
排序方式: 共有192条查询结果,搜索用时 15 毫秒
21.
Ten regional climate models (RCM) have been integrated with the standard forcings of the PRUDENCE experiment: IPCC-SRES A2 radiative forcing and Hadley Centre boundary conditions. The response over Europe, calculated as the difference between the 2071–2100 and the 1961–1990 means can be viewed as an expected value about which various uncertainties exist. Uncertainties are measured here by variance in eight sub-European boxes. Four sources of uncertainty can be evaluated with the material provided by the PRUDENCE project. Sampling uncertainty is due to the fact that the model climate is estimated as an average over a finite number of years (30). Model uncertainty is due to the fact that the models use different techniques to discretize the equations and to represent sub-grid effects. Radiative uncertainty is due to the fact that IPCC-SRES A2 is merely one hypothesis. Some RCMs have been run with another scenario of greenhouse gas concentration (IPCC-SRES B2). Boundary uncertainty is due to the fact that the regional models have been run under the constraint of the same global model. Some RCMs have been run with other boundary forcings. The contribution of the different sources varies according to the field, the region and the season, but the role of boundary forcing is generally greater than the role of the RCM, in particular for temperature. Maps of minimum expected 2m temperature and precipitation responses for the IPCC-A2 scenario show that, despite the above mentioned uncertainties, the signal from the PRUDENCE ensemble is significant.  相似文献   
22.
Initial findings from high-latitude ice-cores implied a relatively unvarying Holocene climate, in contrast to the major climate swings in the preceding late-Pleistocene. However, several climate archives from low latitudes imply a less than equable Holocene climate, as do recent studies on peat bogs in mainland north-west Europe, which indicate an abrupt climate cooling 2800 years ago, with parallels claimed in a range of climate archives elsewhere. A hypothesis that this claimed climate shift was global, and caused by reduced solar activity, has recently been disputed. Until now, no directly comparable data were available from the southern hemisphere to help resolve the dispute. Building on investigations of the vegetation history of an extensive mire in the Valle de Andorra, Tierra del Fuego, we took a further peat core from the bog to generate a high-resolution climate history through the use of determination of peat humification and quantitative leaf-count plant macrofossil analysis. Here, we present the new proxy-climate data from the bog in South America. The data are directly comparable with those in Europe, as they were produced using identical laboratory methods. They show that there was a major climate perturbation at the same time as in northwest European bogs. Its timing, nature and apparent global synchronicity lend support to the notion of solar forcing of past climate change, amplified by oceanic circulation. This finding of a similar response simultaneously in both hemispheres may help validate and improve global climate models. That reduced solar activity might cause a global climatic change suggests that attention be paid also to consideration of any global climate response to increases in solar activity. This has implications for interpreting the relative contribution of climate drivers of recent ‘global warming’.  相似文献   
23.
This paper documents our development and evaluation of a numerical solver for systems of sparsely linked ordinary differential equations in which the connectivity between equations is determined by a directed tree. These types of systems arise in distributed hydrological models. The numerical solver is based on dense output Runge–Kutta methods that allow for asynchronous integration. A partition of the system is used to distribute the workload among different processes, enabling a parallel implementation that capitalizes on a distributed memory system. Communication between processes is performed asynchronously. We illustrate the solver capabilities by integrating flow transport equations for a ∼17,000 km2 river basin subdivided into 305,000 sub-watersheds that are interconnected by the river network. Numerical experiments for a few models are performed and the runtimes and scalability on our parallel computer are presented. Efficient numerical integrators such as the one demonstrated here bring closer to reality the goal of implementing fully distributed real-time flood forecasting systems supported by physics based hydrological models and high-quality/high-resolution rainfall products.  相似文献   
24.
A new set of approximations to the standard TEOS-10 equation of state are presented. These follow a polynomial form, making it computationally efficient for use in numerical ocean models. Two versions are provided, the first being a fit of density for Boussinesq ocean models, and the second fitting specific volume which is more suitable for compressible models. Both versions are given as the sum of a vertical reference profile (6th-order polynomial) and an anomaly (52-term polynomial, cubic in pressure), with relative errors of ∼0.1% on the thermal expansion coefficients. A 75-term polynomial expression is also presented for computing specific volume, with a better accuracy than the existing TEOS-10 48-term rational approximation, especially regarding the sound speed, and it is suggested that this expression represents a valuable approximation of the TEOS-10 equation of state for hydrographic data analysis. In the last section, practical aspects about the implementation of TEOS-10 in ocean models are discussed.  相似文献   
25.
The performances of various dynamical models from the Asia-Pacific Economic Cooperation(APEC) Climate Center(APCC) multi-model ensemble(MME) in predicting station-scale rainfall in South China(SC) in June were evaluated.It was found that the MME mean of model hindcasts can skillfully predict the June rainfall anomaly averaged over the SC domain.This could be related to the MME's ability in capturing the observed linkages between SC rainfall and atmospheric large-scale circulation anomalies in the Indo-Pacific region.Further assessment of station-scale June rainfall prediction based on direct model output(DMO) over 97 stations in SC revealed that the MME mean outperforms each individual model.However,poor prediction abilities in some in-land and southeastern SC stations are apparent in the MME mean and in a number of models.In order to improve the performance at those stations with poor DMO prediction skill,a station-based statistical downscaling scheme was constructed and applied to the individual and MME mean hindcast runs.For several models,this scheme can outperform DMO at more than 30 stations,because it can tap into the abilities of the models in capturing the anomalous Indo-Paciric circulation to which SC rainfall is considerably sensitive.Therefore,enhanced rainfall prediction abilities in these models should make them more useful for disaster preparedness and mitigation purposes.  相似文献   
26.
27.
A verification framework for interannual-to-decadal predictions experiments   总被引:2,自引:1,他引:1  
Decadal predictions have a high profile in the climate science community and beyond, yet very little is known about their skill. Nor is there any agreed protocol for estimating their skill. This paper proposes a sound and coordinated framework for verification of decadal hindcast experiments. The framework is illustrated for decadal hindcasts tailored to meet the requirements and specifications of CMIP5 (Coupled Model Intercomparison Project phase 5). The chosen metrics address key questions about the information content in initialized decadal hindcasts. These questions are: (1) Do the initial conditions in the hindcasts lead to more accurate predictions of the climate, compared to un-initialized climate change projections? and (2) Is the prediction model’s ensemble spread an appropriate representation of forecast uncertainty on average? The first question is addressed through deterministic metrics that compare the initialized and uninitialized hindcasts. The second question is addressed through a probabilistic metric applied to the initialized hindcasts and comparing different ways to ascribe forecast uncertainty. Verification is advocated at smoothed regional scales that can illuminate broad areas of predictability, as well as at the grid scale, since many users of the decadal prediction experiments who feed the climate data into applications or decision models will use the data at grid scale, or downscale it to even higher resolution. An overall statement on skill of CMIP5 decadal hindcasts is not the aim of this paper. The results presented are only illustrative of the framework, which would enable such studies. However, broad conclusions that are beginning to emerge from the CMIP5 results include (1) Most predictability at the interannual-to-decadal scale, relative to climatological averages, comes from external forcing, particularly for temperature; (2) though moderate, additional skill is added by the initial conditions over what is imparted by external forcing alone; however, the impact of initialization may result in overall worse predictions in some regions than provided by uninitialized climate change projections; (3) limited hindcast records and the dearth of climate-quality observational data impede our ability to quantify expected skill as well as model biases; and (4) as is common to seasonal-to-interannual model predictions, the spread of the ensemble members is not necessarily a good representation of forecast uncertainty. The authors recommend that this framework be adopted to serve as a starting point to compare prediction quality across prediction systems. The framework can provide a baseline against which future improvements can be quantified. The framework also provides guidance on the use of these model predictions, which differ in fundamental ways from the climate change projections that much of the community has become familiar with, including adjustment of mean and conditional biases, and consideration of how to best approach forecast uncertainty.  相似文献   
28.
Forecasting grain production is of strategic importance in considerations of climate change and growing population. Here we show that the springtime North Atlantic Oscillation (NAO) is significantly correlated to the year-to-year increment of maize and rice yield in Northeast China (NEC). The physical mechanism for this relationship was investigated. Springtime NAO can induce sea surface temperature anomalies (SSTAs) in the North Atlantic, which display a tripole pattern and are similar to the empirical mode pattern in spring. The spring Atlantic SSTA pattern that could persists to summer, can trigger a high-level tropospheric Rossby wave response in the Eurasia continent, resulting in atmospheric circulation anomalies over the Siberia-Mongolia region, which is unfavorable (favorable) for cold surges that affect NEC. Weaker (stronger) cold surges can accordingly reduce (increase) cloud amount, resulting in an increase (a decrease) in daily maximum temperature and a decrease (an increase) in daily minimum temperature, thereby leading to an increase (a decrease) in diurnal temperature range. And summer-mean daily minimum temperature and diurnal temperature range are most significantly related to the NEC crop yields.  相似文献   
29.
Currently, ensemble seasonal forecasts using a single model with multiple perturbed initial conditions generally suffer from an “overconfidence” problem, i.e., the ensemble evolves such that the spread among members is small, compared to the magnitude of the mean error. This has motivated the use of a multi-model ensemble (MME), a technique that aims at sampling the structural uncertainty in the forecasting system. Here we investigate how the structural uncertainty in the ocean initial conditions impacts the reliability in seasonal forecasts, by using a new ensemble generation method to be referred to as the multiple-ocean analysis ensemble (MAE) initialization. In the MAE method, multiple ocean analyses are used to build an ensemble of ocean initial states, thus sampling structural uncertainties in oceanic initial conditions (OIC) originating from errors in the ocean model, the forcing flux, and the measurements, especially in areas and times of insufficient observations, as well as from the dependence on data assimilation methods. The merit of MAE initialization is demonstrated by the improved El Niño and the Southern Oscillation (ENSO) forecasting reliability. In particular, compared with the atmospheric perturbation or lagged ensemble approaches, the MAE initialization more effectively enhances ensemble dispersion in ENSO forecasting. A quantitative probabilistic measure of reliability also indicates that the MAE method performs better in forecasting all three (warm, neutral and cold) categories of ENSO events. In addition to improving seasonal forecasts, the MAE strategy may be used to identify the characteristics of the current structural uncertainty and as guidance for improving the observational network and assimilation strategy. Moreover, although the MAE method is not expected to totally correct the overconfidence of seasonal forecasts, our results demonstrate that OIC uncertainty is one of the major sources of forecast overconfidence, and suggest that the MAE is an essential component of an MME system.  相似文献   
30.
Climate change could have significant impacts on hydrology. This paper uses UK Climate Projections 09 (UKCP09) products to assess the impacts on flood frequency in Britain. The main UKCP09 product comprises conditional probabilistic information on changes in a number of climate variables on a 25?×?25?km grid across the UK (the Sampled Data change factors). A second product is a Weather Generator which produces time-series of current weather variables and future weather variables based on the Sampled Data and consistent with the change factors. A third product comprises time-series from a Regional Climate Model (RCM) ensemble which were used to downscale Global Climate Models (GCMs) on which the projections are based and whose outputs were used in the production of the Sampled Data. This paper compares the use of Sampled Data change factors, Weather Generator time-series, RCM-derived change factors and RCM time-series. Each is used to provide hydrological model inputs for nine catchments, to assess impacts for the 2080s (A1B emissions). The results show relatively good agreement between methods for most catchments, with the four median values for a catchment generally being within 10% of each other. There are also some clear differences, with the use of time-series generally leading to a greater uncertainty range than the use of change factors because the latter do not allow for the effects of, or changes in, natural variability. Also, the use of Weather Generator time-series leads to much greater impacts than the other methods for one catchment. The results suggest that climate impact studies should not necessarily rely on the application of just one UKCP09 product, as each has different strengths and weaknesses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号