首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seasonal rainfall predictability over the Huaihe River basin is evaluated in this paper on the basis of 23-year(1981-2003) retrospective forecasts by 10 climate models from the Asia-Pacific Economic Cooperation(APEC) Climate Center(APCC) multi-model ensemble(MME) prediction system.It is found that the summer rainfall variance in this basin is largely internal,which leads to lower rainfall predictability for most individual climate models.By dividing the 10 models into three categories according to their sea surface temperature(SST) boundary conditions including observed,predicted,and persistent SSTs,the MME deterministic predictive skill of summer rainfall over Huaihe River basin is investigated.It is shown that the MME is effective for increasing the current seasonal forecast skill.Further analysis shows that the MME averaged over predicted SST models has the highest rainfall prediction skill,which is closely related to model’s capability in reproducing the observed dominant modes of the summer rainfall anomalies in Huaihe River basin.This result can be further ascribed to the fact that the predicted SST MME is the most effective model ensemble for capturing the relationship between the summer rainfall anomalies over Huaihe River basin and the SST anomalies(SSTAs) in equatorial oceans.  相似文献   

2.
A new approach to ensemble forecasting of rainfall over India based on daily outputs of four operational numerical weather prediction (NWP) models in the medium-range timescale (up to 5 days) is proposed in this study. Four global models, namely ECMWF, JMA, GFS and UKMO available on real-time basis at India Meteorological Department, New Delhi, are used simultaneously with adequate weights to obtain a multi-model ensemble (MME) technique. In this technique, weights for each NWP model at each grid point are assigned on the basis of unbiased mean absolute error between the bias-corrected forecast and observed rainfall time series of 366 daily data of 3 consecutive southwest monsoon periods (JJAS) of 2008, 2009 and 2010. Apart from MME, a simple ensemble mean (ENSM) forecast is also generated and experimented. The prediction skill of MME is examined against observed and corresponding outputs of each constituent model during monsoon 2011. The inter-comparison reveals that MME is able to provide more realistic forecast of rainfall over Indian monsoon region by taking the strength of each constituent model. It has been further found that the weighted MME technique has higher skill in predicting daily rainfall compared to ENSM and individual member models. RMSE is found to be lowest in MME forecasts both in magnitude and area coverage. This indicates that fluctuations of day-to-day errors are relatively less in the MME forecast. The inter-comparison of domain-averaged skill scores for different rainfall thresholds further clearly demonstrates that the MME algorithm improves slightly above the ENSM and member models.  相似文献   

3.
In this study, we assess the prediction for May rainfall over southern China (SC) by using the NCEP CFSv2 outputs. Results show that the CFSv2 is able to depict the climatology of May rainfall and associated circulations. However, the model has a poor skill in predicting interannual variation due to its poor performance in capturing related anomalous circulations. In observation, the above-normal SC rainfall is associated with two anomalous anticyclones over the western tropical Pacific and northeastern China, respectively, with a low-pressure convergence in between. In the CFSv2, however, the anomalous circulations exhibit the patterns in response to the El Ni?o-Southern Oscillation (ENSO), demonstrating that the model overestimates the relationship between May SC rainfall and the ENSO. Because of the onset of the South China Sea monsoon, the atmospheric circulation in May over SC is more complex, so the prediction for May SC rainfall is more challenging. In this study, we establish a dynamic-statistical forecast model for May SC rainfall based on the relationship between the interannual variation of rainfall and large-scale ocean-atmosphere variables in the CFSv2. The sea surface temperature anomalies (SSTAs) in the northeastern Pacific and the central-eastern equatorial Pacific, and the 500-hPa geopotential height anomalies over western Siberia in previous April, which exert great influence on the SC rainfall in May, are chosen as predictors. Furthermore, multiple linear regression is employed between the predictors obtained from the CFSv2 and observed May SC rainfall. Both cross validation and independent test show that the hybrid model significantly improve the model''s skill in predicting the interannual variation of May SC rainfall by two months in advance.  相似文献   

4.
In early summer (May–June, MJ) the strongest rainfall belt of the northern hemisphere occurs over the East Asian (EA) subtropical front. During this period the South China (SC) rainfall reaches its annual peak and represents the maximum rainfall variability over EA. Hence we establish an SC rainfall index, which is the MJ mean precipitation averaged over 72 stations over SC (south of 28°N and east of 110°E) and represents superbly the leading empirical orthogonal function mode of MJ precipitation variability over EA. In order to predict SC rainfall, we established a physical-empirical model. Analysis of 34-year observations (1979–2012) reveals three physically consequential predictors. A plentiful SC rainfall is preceded in the previous winter by (a) a dipole sea surface temperature (SST) tendency in the Indo-Pacific warm pool, (b) a tripolar SST tendency in North Atlantic Ocean, and (c) a warming tendency in northern Asia. These precursors foreshadow enhanced Philippine Sea subtropical High and Okhotsk High in early summer, which are controlling factors for enhanced subtropical frontal rainfall. The physical empirical model built on these predictors achieves a cross-validated forecast correlation skill of 0.75 for 1979–2012. Surprisingly, this skill is substantially higher than four-dynamical models’ ensemble prediction for 1979–2010 period (0.15). The results here suggest that the low prediction skill of current dynamical models is largely due to models’ deficiency and the dynamical prediction has large room to improve.  相似文献   

5.
The purpose of this study was to design and test a statistical-dynamical scheme for the extraseasonal(one season in advance) prediction of summer rainfall at 160 observation stations across China.The scheme combined both valuable information from the preceding observations and dynamical information from synchronous numerical predictions of atmospheric circulation factors produced by an atmospheric general circulation model.First,the key preceding climatic signals and synchronous atmospheric circulation factors that were not only closely related to summer rainfall but also numerically predictable were identified as the potential predictors.Second,the extraseasonal prediction models of summer rainfall were constructed using a multivariate linear regression analysis for 15 subregions and then 160 stations across China.Cross-validation analyses performed for the period 1983-2008 revealed that the performance of the prediction models was not only high in terms of interannual variation,trend,and sign but also was stable during the whole period.Furthermore,the performance of the scheme was confirmed by the accuracy of the real-time prediction of summer rainfall during 2009 and 2010.  相似文献   

6.
The South Asian High(SAH) is one of the most important components of the Asian summer monsoon system. To understand the ability of state-of-the-art general circulation models(GCMs) to capture the major characteristics of the SAH, the authors evaluate 18 atmospheric models that participated in the Coupled Model Intercomparison Project Phase 5/Atmospheric Model Intercomparison Project(CMIP5/AMIP). Results show that the multi-model ensemble(MME) mean is able to capture the climatological pattern of the SAH, although its intensity is slightly underestimated. For the interannual variability of the SAH, the MME exhibits good correlation with the reanalysis for the area and intensity index, but poor skill in capturing the east-west oscillation of the SAH. For the interdecadal trend, the MME shows pronounced increasing trends from 1985 to 2008 for the area and intensity indexes, which is consistent with the reanalysis, but fails to capture the westward shift of the SAH center. The individual models show different capacities for capturing climatological patterns, interannual variability, and interdecadal trends of the SAH. Several models fail to capture the climatological pattern, while one model overestimates the intensity of the SAH. Most of the models show good correlations for interannual variability, but nearly half exhibit high root-mean-square difference(RMSD) values. Six models successfully capture the westward shift of the SAH center in the interdecadal trends, while other models fail. The possible causes of the systematic biases involved in several models are also discussed.  相似文献   

7.
The south peninsular part of India gets maximum amount of rainfall during the northeast monsoon (NEM) season [October to November (OND)] which is the primary source of water for the agricultural activities in this region. A nonlinear method viz., Extreme learning machine (ELM) has been employed on general circulation model (GCM) products to make the multi-model ensemble (MME) based estimation of NEM rainfall (NEMR). The ELM is basically is an improved learning algorithm for the single feed-forward neural network (SLFN) architecture. The 27 year (1982–2008) lead-1 (using initial conditions of September for forecasting the mean rainfall of OND) hindcast runs (1982–2008) from seven GCM has been used to make MME. The improvement of the proposed method with respect to other regular MME (simple arithmetic mean of GCMs (EM) and singular value decomposition based multiple linear regressions based MME) has been assessed through several skill metrics like Spread distribution, multiplicative bias, prediction errors, the yield of prediction, Pearson’s and Kendal’s correlation coefficient and Wilmort’s index of agreement. The efficiency of ELM estimated rainfall is established by all the stated skill scores. The performance of ELM in extreme NEMR years, out of which 4 years are characterized by deficit rainfall and 5 years are identified as excess, is also examined. It is found that the ELM could expeditiously capture these extremes reasonably well as compared to the other MME approaches.  相似文献   

8.
Accurate prediction of the Asian-Australian monsoon (A-AM) seasonal variation is one of the most important and challenging tasks in climate prediction. In order to understand the causes of the low accuracy in the current prediction of the A-AM precipitation, this study strives to determine to what extent the ten state-of-the-art coupled atmosphere-ocean-land climate models and their multi-model ensemble (MME) can capture the two observed major modes of A-AM rainfall variability–which account for 43% of the total interannual variances during the retrospective prediction period of 1981–2001. The first mode is associated with the turnabout of warming to cooling in the El Niño-Southern Oscillation (ENSO), whereas the second mode leads the warming/cooling by about 1 year, signaling precursory conditions for ENSO. The first mode has a strong biennial tendency and reflects the Tropical Biennial Oscillation (Meehl in J Clim 6:31–41, 1993). We show that the MME 1-month lead prediction of the seasonal precipitation anomalies captures the first two leading modes of variability with high fidelity in terms of seasonally evolving spatial patterns and year-to-year temporal variations, as well as their relationships with ENSO. The MME shows a potential to capture the precursors of ENSO in the second mode about five seasons prior to the maturation of a strong El Niño. However, the MME underestimates the total variances of the two modes and the biennial tendency of the first mode. The models have difficulties in capturing precipitation over the maritime continent and the Walker-type teleconnection in the decaying phase of ENSO, which may contribute in part to a monsoon “spring prediction barrier” (SPB). The NCEP/CFS model hindcast results show that, as the lead time increases, the fractional variance of the first mode increases, suggesting that the long-lead predictability of A-AM rainfall comes primarily from ENSO predictability. In the CFS model, the correlation skill for the first principal component remains about 0.9 up to 6 months before it drops rapidly, but for the spatial pattern it exhibits a drop across the boreal spring. This study uncovered two surprising findings. First, the coupled models’ MME predictions capture the first two leading modes of precipitation variability better than those captured by the ERA-40 and NCEP-2 reanalysis datasets, suggesting that treating the atmosphere as a slave may be inherently unable to simulate summer monsoon rainfall variations in the heavily precipitating regions (Wang et al. in J Clim 17:803–818, 2004). It is recommended that future reanalysis should be carried out with coupled atmosphere and ocean models. Second, While the MME in general better than any individual models, the CFS ensemble hindcast outperforms the MME in terms of the biennial tendency and the amplitude of the anomalies, suggesting that the improved skill of MME prediction is at the expense of overestimating the fractional variance of the leading mode. Other outstanding issues are also discussed.  相似文献   

9.
Seasonal prediction of summer rainfall over the Yangtze River valley(YRV) is valuable for agricultural and industrial production and freshwater resource management in China, but remains a major challenge. Earlier multi-model ensemble(MME) prediction schemes for summer rainfall over China focus on single-value prediction, which cannot provide the necessary uncertainty information, while commonly-used ensemble schemes for probability density function(PDF) prediction are not adapted to YRV summer rainfall prediction. In the present study, an MME PDF prediction scheme is proposed based on the ENSEMBLES hindcasts. It is similar to the earlier Bayesian ensemble prediction scheme, but with optimization of ensemble members and a revision of the variance modeling of the likelihood function. The optimized ensemble members are regressed YRV summer rainfall with factors selected from model outputs of synchronous 500-h Pa geopotential height as predictors. The revised variance modeling of the likelihood function is a simple linear regression with ensemble spread as the predictor. The cross-validation skill of 1960–2002 YRV summer rainfall prediction shows that the new scheme produces a skillful PDF prediction, and is much better-calibrated, sharper, and more accurate than the earlier Bayesian ensemble and raw ensemble.  相似文献   

10.
CMIP5/AMIP GCM simulations of East Asian summer monsoon   总被引:1,自引:0,他引:1  
The East Asian summer monsoon (EASM) is a distinctive component of the Asian climate system and critically influences the economy and society of the region.To understand the ability of AGCMs in capturing the major features of EASM,10 models that participated in Coupled Model Intercomparison Project/Atmospheric Model Intercomparison Project (CMIP5/AMIP),which used observational SST and sea ice to drive AGCMs during the period 1979-2008,were evaluated by comparing with observations and AMIP Ⅱ simulations.The results indicated that the multi-model ensemble (MME) of CMIP5/AMIP captures the main characteristics of precipitation and monsoon circulation,and shows the best skill in EASM simulation,better than the AMIP Ⅱ MME.As for the Meiyu/Changma/Baiyu rainbelt,the intensity of rainfall is underestimated in all the models.The biases are caused by a weak western Pacific subtropical high (WPSH) and accompanying eastward southwesterly winds in group Ⅰ models,and by a too strong and west-extended WPSH as well as westerly winds in group Ⅱ models.Considerable systematic errors exist in the simulated seasonal migration of rainfall,and the notable northward jumps and rainfall persistence remain a challenge for all the models.However,the CMIP5/AMIP MME is skillful in simulating the western North Pacific monsoon index (WNPMI).  相似文献   

11.
Summary A revised 25-point Shuman-Shapiro Spatial Filter (RSSSF) has been applied to six atmospheric circulation models and multi-model ensemble (MME) predictions, and its effect on the improvement of model forecast skill scores of the Asian summer precipitation anomaly is discussed in this paper. On the basis of 21-yr model ensemble predictions, the RSSSF can remove the unpredictable ‘noise’ with respect to the 2-grid wavelength in the model precipitation anomaly fields and maintain the large-scale counterpart, which is related to the response of the model to large-scale boundary forcing. Therefore, this could possibly enhance the forecast skill of the Asian summer rainfall anomaly in the models and the MME. The potential improvement of model forecasting skill is found in the Asian summer monsoon region, where the anomaly correlation coefficient (ACC) has been improved by 7–40%, corresponding to the decreased root mean square error (RMSE) in the model and the MME precipitation anomaly forecasts.  相似文献   

12.
Based on the simulations of 31 global models in CMIP5, the performance of the models in simulating the Hadley and Walker circulations is evaluated. In addition, their change in intensity by the end of the 21 st century(2080–2099) under the RCP4.5 and RCP8.5 scenarios, relative to 1986–2005, is analyzed from the perspective of 200 h Pa velocity potential.Validation shows good performance of the individual CMIP5 models and the multi-model ensemble mean(MME) in reproducing the meridional(zonal) structure and magnitude of Hadley(Walker) circulation. The MME can also capture the observed strengthening tendency of the winter Hadley circulation and weakening tendency of the Walker circulation. Such secular trends can be simulated by 39% and 74% of the models, respectively. The MME projection indicates that the winter Hadley circulation and the Walker circulation will weaken under both scenarios by the end of the 21 st century. The weakening amplitude is larger under RCP8.5 than RCP4.5, due to stronger external forcing. The majority of the CMIP5 models show the same projection as the MME. However, for the summer Hadley circulation, the MME shows little change under RCP4.5 and large intermodel spread is apparent. Around half of the models project an increase, and the other half project a decrease. Under the RCP8.5 scenario, the MME and 65% of the models project a weakening of the summer southern Hadley circulation.  相似文献   

13.
Forecast skill of the APEC Climate Center (APCC) Multi-Model Ensemble (MME) seasonal forecast system in predicting two main types of El Niño-Southern Oscillation (ENSO), namely canonical (or cold tongue) and Modoki ENSO, and their regional climate impacts is assessed for boreal winter. The APCC MME is constructed by simple composite of ensemble forecasts from five independent coupled ocean-atmosphere climate models. Based on a hindcast set targeting boreal winter prediction for the period 1982–2004, we show that the MME can predict and discern the important differences in the patterns of tropical Pacific sea surface temperature anomaly between the canonical and Modoki ENSO one and four month ahead. Importantly, the four month lead MME beats the persistent forecast. The MME reasonably predicts the distinct impacts of the canonical ENSO, including the strong winter monsoon rainfall over East Asia, the below normal rainfall and above normal temperature over Australia, the anomalously wet conditions across the south and cold conditions over the whole area of USA, and the anomalously dry conditions over South America. However, there are some limitations in capturing its regional impacts, especially, over Australasia and tropical South America at a lead time of one and four months. Nonetheless, forecast skills for rainfall and temperature over East Asia and North America during ENSO Modoki are comparable to or slightly higher than those during canonical ENSO events.  相似文献   

14.
The performance of the new multi-model seasonal prediction system developed in the frame work of the ENSEMBLES EU project for the seasonal forecasts of India summer monsoon variability is compared with the results from the previous EU project, DEMETER. We have considered the results of six participating ocean-atmosphere coupled models with 9 ensemble members each for the common period of 1960–2005 with May initial conditions. The ENSEMBLES multi-model ensemble (MME) results show systematic biases in the representation of mean monsoon seasonal rainfall over the Indian region, which are similar to that of DEMETER. The ENSEMBLES coupled models are characterized by an excessive oceanic forcing on the atmosphere over the equatorial Indian Ocean. The skill of the seasonal forecasts of Indian summer monsoon rainfall by the ENSEMBLES MME has however improved significantly compared to the DEMETER MME. Its performance in the drought years like 1972, 1974, 1982 and the excess year of 1961 was in particular better than the DEMETER MME. The ENSEMBLES MME could not capture the recent weakening of the ENSO-Indian monsoon relationship resulting in a decrease in the prediction skill compared to the “perfect model” skill during the recent years. The ENSEMBLES MME however correctly captures the north Atlantic-Indian monsoon teleconnections, which are independent of ENSO.  相似文献   

15.
不同天气系统宁夏夏季降雨谱分布参量特征的观测研究   总被引:22,自引:6,他引:22  
利用 1982— 1984年 6~ 9月份在 7个气象站 2 0 0次观测获取的 6 0 5 3份滴谱资料 ,分析了宁夏雨滴谱及有关物理量的特征。宁夏地区夏季降水平均雨滴空间浓度数为 2 85个·m-3 ,平均谱可以描述为N(Di) =2 0 9.2exp(- 2 .6 335Di)。文中给出了不同雨强下的平均谱分布及谱参数的演变和影响降水的 3种环流形势下的平均滴谱特征 ,还分别建立了雷达反射率因子Z与雨强、雨滴落地动能通量和雨水含量之间的相关关系。这些资料可用于雷达定量测定降水和区域降水量、水土保持和生态环境建设  相似文献   

16.
We assessed current status of multi-model ensemble (MME) deterministic and probabilistic seasonal prediction based on 25-year (1980–2004) retrospective forecasts performed by 14 climate model systems (7 one-tier and 7 two-tier systems) that participate in the Climate Prediction and its Application to Society (CliPAS) project sponsored by the Asian-Pacific Economic Cooperation Climate Center (APCC). We also evaluated seven DEMETER models’ MME for the period of 1981–2001 for comparison. Based on the assessment, future direction for improvement of seasonal prediction is discussed. We found that two measures of probabilistic forecast skill, the Brier Skill Score (BSS) and Area under the Relative Operating Characteristic curve (AROC), display similar spatial patterns as those represented by temporal correlation coefficient (TCC) score of deterministic MME forecast. A TCC score of 0.6 corresponds approximately to a BSS of 0.1 and an AROC of 0.7 and beyond these critical threshold values, they are almost linearly correlated. The MME method is demonstrated to be a valuable approach for reducing errors and quantifying forecast uncertainty due to model formulation. The MME prediction skill is substantially better than the averaged skill of all individual models. For instance, the TCC score of CliPAS one-tier MME forecast of Niño 3.4 index at a 6-month lead initiated from 1 May is 0.77, which is significantly higher than the corresponding averaged skill of seven individual coupled models (0.63). The MME made by using 14 coupled models from both DEMETER and CliPAS shows an even higher TCC score of 0.87. Effectiveness of MME depends on the averaged skill of individual models and their mutual independency. For probabilistic forecast the CliPAS MME gains considerable skill from increased forecast reliability as the number of model being used increases; the forecast resolution also increases for 2 m temperature but slightly decreases for precipitation. Equatorial Sea Surface Temperature (SST) anomalies are primary sources of atmospheric climate variability worldwide. The MME 1-month lead hindcast can predict, with high fidelity, the spatial–temporal structures of the first two leading empirical orthogonal modes of the equatorial SST anomalies for both boreal summer (JJA) and winter (DJF), which account for about 80–90% of the total variance. The major bias is a westward shift of SST anomaly between the dateline and 120°E, which may potentially degrade global teleconnection associated with it. The TCC score for SST predictions over the equatorial eastern Indian Ocean reaches about 0.68 with a 6-month lead forecast. However, the TCC score for Indian Ocean Dipole (IOD) index drops below 0.40 at a 3-month lead for both the May and November initial conditions due to the prediction barriers across July, and January, respectively. The MME prediction skills are well correlated with the amplitude of Niño 3.4 SST variation. The forecasts for 2 m air temperature are better in El Niño years than in La Niña years. The precipitation and circulation are predicted better in ENSO-decaying JJA than in ENSO-developing JJA. There is virtually no skill in ENSO-neutral years. Continuing improvement of the one-tier climate model’s slow coupled dynamics in reproducing realistic amplitude, spatial patterns, and temporal evolution of ENSO cycle is a key for long-lead seasonal forecast. Forecast of monsoon precipitation remains a major challenge. The seasonal rainfall predictions over land and during local summer have little skill, especially over tropical Africa. The differences in forecast skills over land areas between the CliPAS and DEMETER MMEs indicate potentials for further improvement of prediction over land. There is an urgent need to assess impacts of land surface initialization on the skill of seasonal and monthly forecast using a multi-model framework.  相似文献   

17.
A statistical downscaling approach based on multiple-linear-regression (MLR) for the prediction of summer precipitation anomaly in southeastern China was established, which was based on the outputs of seven operational dynamical models of Development of a European Multi-model Ensemble System for Seasonal to Interannual Prediction (DEMETER) and observed data. It was found that the anomaly correlation coefficients (ACCs) spatial pattern of June-July-August (JJA) precipitation over southeastern China between the seven models and the observation were increased significantly; especially in the central and the northeastern areas, the ACCs were all larger than 0.42 (above 95% level) and 0.53 (above 99% level). Meanwhile, the root-mean-square errors (RMSE) were reduced in each model along with the multi-model ensemble (MME) for some of the stations in the northeastern area; additionally, the value of RMSE difference between before and after downscaling at some stations were larger than 1 mm d-1. Regionally averaged JJA rainfall anomaly temporal series of the downscaling scheme can capture the main characteristics of observation, while the correlation coefficients (CCs) between the temporal variations of the observation and downscaling results varied from 0.52 to 0.69 with corresponding variations from -0.27 to 0.22 for CCs between the observation and outputs of the models.  相似文献   

18.
The Northwest Pacific (NWP) circulation (subtropical high) is an important component of the East Asian summer monsoon system. During summer (June–August), anomalous lower tropospheric anticyclonic (cyclonic) circulation appears over NWP in some years, which is an indicative of stronger (weaker) than normal subtropical high. The anomalous NWP cyclonic (anticyclonic) circulation years are associated with negative (positive) precipitation anomalies over most of Indian summer monsoon rainfall (ISMR) region. This indicates concurrent relationship between NWP circulation and convection over the ISMR region. Dry wind advection from subtropical land regions and moisture divergence over the southern peninsular India during the NWP cyclonic circulation years are mainly responsible for the negative rainfall anomalies over the ISMR region. In contrast, during anticyclonic years, warm north Indian Ocean and moisture divergence over the head Bay of Bengal-Gangetic Plain region support moisture instability and convergence in the southern flank of ridge region, which favors positive rainfall over most of the ISMR region. The interaction between NWP circulation (anticyclonic or cyclonic) and ISMR and their predictability during these anomalous years are examined in the present study. Seven coupled ocean–atmosphere general circulation models from the Asia-Pacific Economic Cooperation Climate Center and their multimodel ensemble mean skills in predicting the seasonal rainfall and circulation anomalies over the ISMR region and NWP for the period 1982–2004 are assessed. Analysis reveals that three (two) out of seven models are unable to predict negative (positive) precipitation anomalies over the Indian subcontinent during the NWP cyclonic (anticyclonic) circulation years at 1-month lead (model is initialized on 1 May). The limited westward extension of the NWP circulation and misrepresentation of SST anomalies over the north Indian Ocean are found to be the main reasons for the poor skill (of some models) in rainfall prediction over the Indian subcontinent. This study demonstrates the importance of the NWP circulation variability in predicting summer monsoon precipitation over South Asia. Considering the predictability of the NWP circulation, the current study provides an insight into the predictability of ISMR. Long lead prediction of the ISMR associated with anomalous NWP circulation is also discussed.  相似文献   

19.
Long-lead prediction of waxing and waning of the Western North Pacific (WNP)-East Asian (EA) summer monsoon (WNP-EASM) precipitation is a major challenge in seasonal time-scale climate prediction. In this study, deficiencies and potential for predicting the WNP-EASM precipitation and circulation one or two seasons ahead were examined using retrospective forecast data for the 26-year period of 1981–2006 from two operational couple models which are the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFS) and the Bureau of Meteorology Research Center (BMRC) Predictive Ocean–Atmosphere Model for Australia (POAMA). While both coupled models have difficulty in predicting summer mean precipitation anomalies over the region of interest, even for a 0-month lead forecast, they are capable of predicting zonal wind anomalies at 850 hPa several months ahead and, consequently, satisfactorily predict summer monsoon circulation indices for the EA region (EASMI) and for the WNP region (WNPSMI). It should be noted that the two models’ multi-model ensemble (MME) reaches 0.40 of the correlation skill for the EASMI with a January initial condition and 0.75 for the WNPSMI with a February initial condition. Further analysis indicates that prediction reliability of the EASMI is related not only to the preceding El Niño and Southern Oscillation (ENSO) but also to simultaneous local SST variability. On other hand, better prediction of the WNPSMI is accompanied by a more realistic simulation of lead–lag relationship between the index and ENSO. It should also be noted that current coupled models have difficulty in capturing the interannual variability component of the WNP-EASM system which is not correlated with typical ENSO variability. To improve the long-lead seasonal prediction of the WNP-EASM precipitation, a statistical postprocessing was developed based on the multiple linear regression method. The method utilizes the MME prediction of the EASMI and WNPSMI as predictors. It is shown that the statistical postprocessing is able to improve forecast skill for the summer mean precipitation over most of the WNP-EASM region at all forecast leads. It is noteworthy that the MME prediction, after applying statistical postprocessing, shows the best anomaly pattern correlation skill for the EASM precipitation at a 4-month lead (February initial condition) and for the WNPSM precipitation at a 5-month lead (January initial condition), indicating its potential for improving long-lead prediction of the monsoon precipitation.  相似文献   

20.
We attempt to apply year-to-year increment prediction to develop an effective statistical downscaling scheme for summer (JJA, June–July–August) rainfall prediction at the station-to-station scale in Southeastern China (SEC). The year-to-year increment in a variable was defined as the difference between the current year and the previous year. This difference is related to the quasi-biennial oscillation in interannual variations in precipitation. Three predictors from observations and six from three general circulation models (GCMs) outputs of the development of a European multi-model ensemble system for seasonal to interannual prediction (DEMETER) project were used to establish this downscaling model. The independent sample test and the cross-validation test show that the downscaling scheme yields better predicted skill for summer precipitation at most stations over SEC than the original DEMETER GCM outputs, with greater temporal correlation coefficients and spatial anomaly correlation coefficients, as well as lower root-mean-square errors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号